56 research outputs found
A procedure to extract the complex amplitudes of He photodouble ionization from experimental data
A procedure to extract the two complex amplitudes that govern the He photodouble ionization process from the experimental data is proposed. The results are compared with the predictions of the convergent close coupling and hyperspherical R-matrix with semiclassical outgoing wave theories
Equivalence of the Siegert-pseudostate and Lagrange-mesh R-matrix methods
Siegert pseudostates are purely outgoing states at some fixed point expanded
over a finite basis. With discretized variables, they provide an accurate
description of scattering in the s wave for short-range potentials with few
basis states. The R-matrix method combined with a Lagrange basis, i.e.
functions which vanish at all points of a mesh but one, leads to simple
mesh-like equations which also allow an accurate description of scattering.
These methods are shown to be exactly equivalent for any basis size, with or
without discretization. The comparison of their assumptions shows how to
accurately derive poles of the scattering matrix in the R-matrix formalism and
suggests how to extend the Siegert-pseudostate method to higher partial waves.
The different concepts are illustrated with the Bargmann potential and with the
centrifugal potential. A simplification of the R-matrix treatment can usefully
be extended to the Siegert-pseudostate method.Comment: 19 pages, 1 figur
Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy
Hyperspherical partial wave approach has been applied here in the study of
double photoionization of the helium atom for equal energy sharing geometry at
20 eV excess energy. Calculations have been done both in length and velocity
gauges and are found to agree with each other, with the CCC results and with
experiments and exhibit some advantages of the corresponding three particle
wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 -
revised considerably, rewritten using ioplatex clas
Hyperspherical partial wave theory applied to electron hydrogen-atom ionization calculation for equal energy sharing kinematics
Hyperspherical partial wave theory has been applied here in a new way in the
calculation of the triple differential cross sections for the ionization of
hydrogen atoms by electron impact at low energies for various
equal-energy-sharing kinematic conditions. The agreement of the cross section
results with the recent absolute measurements of R\"oder \textit {et al} [51]
and with the latest theoretical results of the ECS and CCC calculations [29]
for different kinematic conditions at 17.6 eV is very encouraging. The other
calculated results, for relatively higher energies, are also generally
satisfactory, particularly for large geometries. In view of the
present results, together with the fact that it is capable of describing
unequal-energy-sharing kinematics [35], it may be said that the hyperspherical
partial wave theory is quite appropriate for the description of ionization
events of electron-hydrogen type systems. It is also clear that the present
approach in the implementation of the hyperspherical partial wave theory is
very appropriate.Comment: 16 pages, 9 figures, LaTeX file and EPS figures. To appear in Phys.
Rev.
Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions
Recent progress in the study of the photon emission from highly-charged heavy
ions is reviewed. These investigations show that high- ions provide a unique
tool for improving the understanding of the electron-electron and
electron-photon interaction in the presence of strong fields. Apart from the
bound-state transitions, which are accurately described in the framework of
Quantum Electrodynamics, much information has been obtained also from the
radiative capture of (quasi-) free electrons by high- ions. Many features in
the observed spectra hereby confirm the inherently relativistic behavior of
even the simplest compound quantum systems in Nature.Comment: Version 18/11/0
A hyperspherical R-matrix scheme for two-active-electron systems
International audienc
A numerical exploration of the electron pair dynamics in He around the double ionization threshold
International audienc
- …