3 research outputs found
Analysis of Corrosion Process Development on Metals by Means of Computer Vision
The paper deals with computer vision and image processing methods applied to the task of corrosion damage search. A step-by-step algorithm is given for processing of the data from a chemical corrosion experiment on a metal surface: image preprocessing, image binarization and identification of object contours, and analysis of object characteristics. The application of the developed methods is exemplified by detection and recognition of corrosion damage on a steel specimen, pitting corrosion, and corrosion of an aluminum specimen. Furthermore, the mechanism of fractal analysis for corrosion cracking specimens was studied and fractal dimension was selected as characteristics of corrosion damage
Thin Benzotriazole Films for Inhibition of Carbon Steel Corrosion in Neutral Electrolytes
This article investigates the modification of a carbon steel surface by benzotriazole (BTA), and the structure and properties of the formed layers. Adsorption was studied by surface analytical methods such as X-ray photoelectron spectroscopy (XPS) and reflecting infrared microscopy (FTIR). It has been established that a polymer-like film containing iron-azole complexes that are 2 nm thick and strongly bonded to the metal is formed on the surface as a result of the azole interacting with a steel surface. This film is capable to inhibit uniform and localized corrosion of steel in neutral aqueous electrolytes containing chloride ions. It is shown that the iron-azole layer located at the interface acts as a promotor of adhesion, increasing the interaction of polymeric coatings with the steel surface. Taking into account these properties, the steel pretreatments can be used for improving the anticorrosion properties of polymeric coatings applied for the protection of steel constructions