493 research outputs found
Optical scalars in spherical spacetimes
Consider a spherically symmetric spacelike slice through a spherically
symmetric spacetime. One can derive a universal bound for the optical scalars
on any such slice. The only requirement is that the matter sources satisfy the
dominant energy condition and that the slice be asymptotically flat and regular
at the origin. This bound can be used to derive new conditions for the
formation of apparent horizons. The bounds hold even when the matter has a
distribution on a shell or blows up at the origin so as to give a conical
singularity
Schwarzschild horizon and the gravitational redshift formula
The gravitational redshift formula is usually derived in the geometric optics
approximation. In this note we consider an exact formulation of the problem in
the Schwarzschild space-time, with the intention to clarify under what
conditions this redshift law is valid. It is shown that in the case of shocks
the radial component of the Poynting vector can scale according to the redshift
formula, under a suitable condition. If that condition is not satisfied, then
the effect of the backscattering can lead to significant modifications. The
obtained results imply that the energy flux of the short wavelength radiation
obeys the standard gravitational redshift formula while the energy flux of long
waves can scale differently, with redshifts being dependent on the frequency.Comment: Revtex, 5 p. Rewritten Sec. II, minor changes in Secs III - VII. To
appear in the Classical and Quantum Gravit
Saturation of Spin-Polarized Current in Nanometer Scale Aluminum Grains
We describe measurements of spin-polarized tunnelling via discrete energy
levels of single Aluminum grains. In high resistance samples (),
the spin-polarized tunnelling current rapidly saturates as a function of the
bias voltage. This indicates that spin-polarized current is carried only via
the ground state and the few lowest in energy excited states of the grain. At
the saturation voltage, the spin-relaxation rate of the highest
excited states is comparable to the electron tunnelling rate: and in two samples. The ratio of
to the electron-phonon relaxation rate is in agreement with the Elliot-Yafet
scaling, an evidence that spin-relaxation in Al grains is governed by the
spin-orbit interaction.Comment: 5 pages, 4 figure
Electronic Properties of Clean Au-Graphene Contacts
The effects of Au grains on graphene conduction and doping are investigated
in this report. To obtain a clean Au-graphene contact, Au grains are deposited
over graphene at elevated temperature and in high vacuum, before any chemical
processing. The bulk and the effective contact resistance versus gate voltage
demonstrate that Au grains cause p-doping in graphene. The Fermi level shift is
in agreement with first principles calculations, but the equilibrium separation
we find between the graphene and the top-most Au layer is larger than
predicted. Nonequilibrium electron transport displays giant-phonon thresholds
observed in graphene tunnel junctions, demonstrating the tunneling nature of
the contact, even though there are no dielectrics involved.Comment: 11 pages, 4 figure
Modelling Electron Spin Accumulation in a Metallic Nanoparticle
A model describing spin-polarized current via discrete energy levels of a
metallic nanoparticle, which has strongly asymmetric tunnel contacts to two
ferromagnetic leads, is presented.
In absence of spin-relaxation, the model leads to a spin-accumulation in the
nanoparticle, a difference () between the chemical potentials of
spin-up and spin-down electrons, proportional to the current and the Julliere's
tunnel magnetoresistance. Taking into account an energy dependent
spin-relaxation rate , as a function of bias
voltage () exhibits a crossover from linear to a much weaker dependence,
when equals the spin-polarized current through the
nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon
emission and Elliot-Yafet mechanism, the model leads to a crossover from linear
to dependence. The crossover explains recent measurements of the
saturation of the spin-polarized current with in Aluminum nanoparticles,
and leads to the spin-relaxation rate of in an Aluminum
nanoparticle of diameter , for a transition with an energy difference of
one level spacing.Comment: 37 pages, 7 figure
Transport in Graphene Tunnel Junctions
We present a technique to fabricate tunnel junctions between graphene and Al
and Cu, with a Si back gate, as well as a simple theory of tunneling between a
metal and graphene. We map the differential conductance of our junctions versus
probe and back gate voltage, and observe fluctuations in the conductance that
are directly related to the graphene density of states. The conventional
strong-suppression of the conductance at the graphene Dirac point can not be
clearly demonstrated, but a more robust signature of the Dirac point is found:
the inflection in the conductance map caused by the electrostatic gating of
graphene by the tunnel probe. We present numerical simulations of our
conductance maps, confirming the measurement results. In addition, Al causes
strong n-doping of graphene, Cu causes a moderate p-doping, and in high
resistance junctions, phonon resonances are observed, as in STM studies.Comment: 22 pages, 5 figure
Three-dimensional shapelets and an automated classification scheme for dark matter haloes
We extend the two-dimensional Cartesian shapelet formalism to d-dimensions.
Concentrating on the three-dimensional case, we derive shapelet-based equations
for the mass, centroid, root-mean-square radius, and components of the
quadrupole moment and moment of inertia tensors. Using cosmological N-body
simulations as an application domain, we show that three-dimensional shapelets
can be used to replicate the complex sub-structure of dark matter halos and
demonstrate the basis of an automated classification scheme for halo shapes. We
investigate the shapelet decomposition process from an algorithmic viewpoint,
and consider opportunities for accelerating the computation of shapelet-based
representations using graphics processing units (GPUs).Comment: 19 pages, 11 figures, accepted for publication in MNRA
How to Influence People with Partial Incentives
We study the power of fractional allocations of resources to maximize
influence in a network. This work extends in a natural way the well-studied
model by Kempe, Kleinberg, and Tardos (2003), where a designer selects a
(small) seed set of nodes in a social network to influence directly, this
influence cascades when other nodes reach certain thresholds of neighbor
influence, and the goal is to maximize the final number of influenced nodes.
Despite extensive study from both practical and theoretical viewpoints, this
model limits the designer to a binary choice for each node, with no way to
apply intermediate levels of influence. This model captures some settings
precisely, e.g. exposure to an idea or pathogen, but it fails to capture very
relevant concerns in others, for example, a manufacturer promoting a new
product by distributing five "20% off" coupons instead of giving away one free
product.
While fractional versions of problems tend to be easier to solve than
integral versions, for influence maximization, we show that the two versions
have essentially the same computational complexity. On the other hand, the two
versions can have vastly different solutions: the added flexibility of
fractional allocation can lead to significantly improved influence. Our main
theoretical contribution is to show how to adapt the major positive results
from the integral case to the fractional case. Specifically, Mossel and Roch
(2006) used the submodularity of influence to obtain their integral results; we
introduce a new notion of continuous submodularity, and use this to obtain
matching fractional results. We conclude that we can achieve the same greedy
-approximation for the fractional case as the integral case.
In practice, we find that the fractional model performs substantially better
than the integral model, according to simulations on real-world social network
data
Global solutions of a free boundary problem for selfgravitating scalar fields
The weak cosmic censorship hypothesis can be understood as a statement that
there exists a global Cauchy evolution of a selfgravitating system outside an
event horizon. The resulting Cauchy problem has a free null-like inner
boundary. We study a selfgravitating spherically symmetric nonlinear scalar
field. We show the global existence of a spacetime with a null inner boundary
that initially is located outside the Schwarzschild radius or, more generally,
outside an apparent horizon. The global existence of a patch of a spacetime
that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit
- …