264 research outputs found

    Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography

    Get PDF
    The use of composite materials is growing more and more every day in several applications. The arrangement or orientation of the fibers relative to one another have a significant influence on the strength and other properties of fiber reinforced composites. Thus, evaluation techniques are needed for measuring material fiber orientation. In this work infrared thermography is employed to assess the material’s fiber orientation. More specifically a pulsed infrared diode laser heating spot technique combined with a 3D model of the part is used in order to assess fiber orientation on the surface of carbon fiber-reinforced polymer complex shaped parts made of carbon/PEEK (Polyether ether ketone) randomly-oriented strands

    Multisensor image fusion approach utilizing hybrid pre-enhancement and double nonsubsampled contourlet transform

    Get PDF
    A multisensor image fusion approach established on the hybrid-domain image enhancement and double nonsubsampled contourlet transform (NSCT) is proposed. The hybrid-domain pre-enhancement algorithm can promote the contrast of the visible color image. Different fusion rules are, respectively, selected and applied to obtain fusion results. The double NSCT framework is introduced to obtain better fusion performance than the general single NSCT framework. Experimental outcomes in fused images and performance results demonstrate that the presented approach is apparently more advantageous

    Infrared thermography and NDT : 2050 horizon

    Get PDF
    Society is changing fast, new technologies and materials have been developed which require new inspection approaches. Infrared thermography (IRT) has emerged in the recent years as an attractive and reliable technique to address complex non-destructive testing (NDT) problems. Companies are now providing turn-key IRT-NDT systems, but the question we ask now is ‘What is next?’. Even though the future is elusive, we can consider the possible future developments in IR NDT. Our analysis shows that new developments will take place in various areas such as: acquisition, stimulation, processing and obviously an always enlarging range of applications with new materials which will have particular inspection requirements. This paper presents the various developments in the field of IRT which have evolved to lead to the current situation, and then examines the potential future trend in IRT-NDT

    Near-infrared light transmission in beef meat and qualitative marbling evaluation using image analysis

    Get PDF
    Marbling (intramuscular fat tissue) in beef meat is one of the most important criteria for quality, notably juiciness, in meat grading systems. Visual inspection of the meat surface is the common way to assign quality grading level, which is accomplished by authorized experts called graders. In the last years, several works were proposed in order to introduce computer vision on meat quality evaluation. In these works, meat grading was based exclusively on the analysis of meat surface images. In this paper, a new technique using near-infrared light in transmission mode is used to evaluate the beef meat quality based on the marbling detection. It is demonstrated that using near-infrared light in transmission mode, it is possible to detect the fat not only on the surface, as in traditional methods, but also under the surface. Also, in combining the analysis of the two sides of the meat simple, it is possible to estimate the volumetric marbling. We compared results from traditional techniques and those provided by the nearinfrared camera using light transmission. The result of this new study showed that using near-infrared light in transmission mode is a valuable technique to evaluate meat quality, thereby demonstrating the possibility of implementing this approach in a vision syste

    An active infrared thermography method for fiber orientation assessment of fiber-reinforced composite materials

    Get PDF
    Fiber orientation in composite materials is an important feature since the arrangement or orientation of the fibers relative to one another has a significant influence on the strength and other properties of fiber reinforced composites. In this paper we present a method to assess the fiber orientation on the surface of carbon fiber reinforced polymer (CFRP) laminates. More specifically, a diode-laser beam is used to locally heat a small spot on the surface of the sample. Observation of the heat pattern in the infrared spectrum enables the assessment of the fiber orientation. Different samples and different regions on the surface of the samples are tested in order to estimate the precision of the method

    Mapping of the indoor conditions by infrared thermography

    Get PDF
    We present an instrumentation devoted to the mapping of indoor ambient conditions by an infrared camera. In addition to a measurement grid composed of several spherical sensors, an infrared camera is used to visualize and quantify the spatial distribution of the air temperature, the air speed, and the mean radiant temperature. A suitable procedure is developed so that from its temperature history recorded by the infrared camera, each sensor can measure, after solving an inverse heat transfer problem, all the three cited parameters. As the sensors are all imaged at the same time by the camera, an interpolation is done with the values they provide; the 2D distribution of each parameter is then obtained. By using a pair of stereoscopic cameras, it is possible to determine the 3D coordinates of each sensor of the measurement grid; consequently, the 3D mapping of the indoor ambient conditions is possible. Two steps are followed and allow us to achieve our goal: the validation of the performance of the sensor in terms of accuracy and reliability, and the validation of the complete experimental procedure which relies on digital image processing and on inverse heat transfer

    Spot weld inspections using active thermography

    Get PDF
    Spot welds have a significant part in the creation of automotive vehicles. Since the integrity of, for example, a car, is dependent on the performance of multiple welds, it is important to ensure the quality of each spot weld. Several attempts have been made in order to determine the quality of spot welds, but most of them do not focus on the applicability in the manufacturing process. Spot weld inspections are often performed using back heating. However, during manufacturing, robotic inspections are desired, and since the bodywork of a car is a complex shape, the accessibility from the inside of the vehicle is minor. Therefore, inspections using front heating are more suitable. In this manuscript, multiple excitation methods are compared as well as different post-processing techniques. The used excitation techniques can be divided into light heating and inductive heating. Light heating is further divided in lock-in thermography and pulse thermography. The used post-processing techniques are principle component analysis and fast Fourier transform. Inductive heating turns out to be the most suitable measurement technique since it is fast and can be performed as front and back heating. Both investigated post-processing techniques deliver suitable information, such as relief images and information of the internal structure of the spot wel

    Fiber orientation assessment on randomly-oriented strands composites by means of infrared thermography

    Get PDF
    In this paper, an infrared thermography technique is used to assess the fiber orientation on the surface of carbon fiber reinforced polymer (CFRP) moulded with randomly-oriented strands (ROS). Due to the randomness of the material, a point by point inspection would be very time consuming. In this paper it is proposed to use a flying laser spot technique to heat a line-region on the surface of the sample instead of a spot. During our experiments, a flying laser spot inspection was performed in 30 s while a point by point inspection of the same area would require about 25 min. An artificial neural network (ANN) was then used to estimate the fiber orientation over the heated line. The classification rate obtained with the network was 91.2% for the training stage and 71.6% for the testing stage

    Detection of insulation flaws and thermal bridges in insulated truck box panels

    Get PDF
    This paper focuses on the detection of defects and thermal bridges in insulated truck box panels, utilising infrared thermography. Unlike the traditional way in which passive thermography is applied, this research uses both heating and cooling methods in active thermography configurations. Lamp heating is used as the hot external stimulation, while a compressed air jet is applied as the cold external stimulation. A thermal camera captures the whole process. In addition, numerical simulations under COMSOL® platform are also conducted. Experimental and simulation results for two situations are compared and discussed
    • …
    corecore