481 research outputs found
The role of atmospheric boundary layer-surface interactions on the development of coastal fronts
Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM). HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline. <br><br> The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (<I>z</I><sub>0</sub>). For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST). Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the precipitation amounts diminish. In the situation under study, frictional convergence is the key process that enhances the coastal front intensity. A thermal difference between land and sea equal to zero still yields the development of the coastal front. A lower SST than land surface temperature generates a reversed coastal front. <br><br> This study emphasizes the importance of accurate prescription of surface conditions as input of the numerical weather prediction model to improve coastal front predictability
Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture
Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs). However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored.
This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs), bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA)-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs' tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs
Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture
The reconstruction of auricular deformities is a very challenging surgical procedure that could benefit from a tissue engineering approach. Nevertheless, a major obstacle is presented by the acquisition of sufficient amounts of autologous cells to create a cartilage construct the size of the human ear. Extensively expanded chondrocytes are unable to retain their phenotype, while bone marrow-derived mesenchymal stromal cells (MSC) show endochondral terminal differentiation by formation of a calcified matrix. The identification of tissue-specific progenitor cells in auricular cartilage, which can be expanded to high numbers without loss of cartilage phenotype, has great prospects for cartilage regeneration of larger constructs. This study investigates the largely unexplored potential of auricular progenitor cells for cartilage tissue engineering in 3D hydrogels
Chondrogenic potential of chondrocytes in hyaluronic acid/PEG-based hydrogels is dependent on the hyaluronic acid concentration
Purpose: Hydrogels based on PEG and methacrylated poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate) (M10P10) are promising biomaterials for Biofabrication of cartilage constructs. Addition of hyaluronic acid (HA) to a hydrogel improves printability by increasing the viscosity. Methacrylating HA (HAMA) can ensure covalent binding in M10P10 hydrogels after UV-cross-linking. Chondrocytes can interact with HAMA via their CD44 receptor, however, the influence of HAMA on chondrogenic potential is unclear. This study aimed to evaluate the influence of different HAMA concentrations on chondrogenesis of chondrocytes in M10P10/HAMA hydrogels. Materials & Methods: Equine chondrocytes were encapsulated in M10P10 hydrogels containing different HAMA concentrations. Cylindrical constructs were cast, UV-cross-linked, and cultured in TGF-β-containing medium. Constructs were analyzed for evidence of cartilage formation. Results: Preliminary data showed an increase in glycosaminoglycan (GAG)/DNA for constructs with low HAMA concentrations (0.1-0.25%) while no differences were found for higher HAMA concentrations, compared to hydrogels without HAMA (Figure 1a). Further, constructs without or with low HAMA concentrations (0.1-0.5%) demonstrated collagen type II positive areas, while this was less pronounced in constructs with 0.5-1% HAMA (n=3, Figure 1b). Conclusion: Preliminary results indicate a dose-dependent effect of HAMA on chondrogenesis of chondrocytes: low concentrations (0.1-0.25%) increase GAG production while higher concentrations (0.5-1%) have no effect on GAG production and reduce collagen type II synthesis. Ongoing evaluations will reveal the extent of chondrogenesis and its association with HAMA concentrations in M10P10/HAMA, and the mechanism responsible for the dose-dependent effect. This study will impact the use of HAMA as viscosity enhancer to improve the printability of hydrogel
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials.
This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition.
Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models
A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics
Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices
Distributing CV entanglement over 4 co-propagating orthogonal modes
We propose a scheme for distributing continuous variable entanglement
originally established among a pair of mode between a set of four orthogonal
co-propagating modes. This is accomplished by exploiting the possibility of
coupling polarization with optical angular momentum provided by the q-plate.
Here we present the principle of the proposed scheme with a short feasibility
study that shows that the four-modes covariance matrix at the scheme output
represent an entangled multi mode system.Comment: 8 pages, 1 figur
- …