102 research outputs found

    Heavy context dependence---decisions of underground soldiers

    Full text link
    An attempt is made to simulate the disclosure of underground soldiers in terms of theory of networks. The coupling mechanism between the network nodes is the possibility that a disclosed soldier is going to disclose also his acquaintances. We calculate the fraction of disclosed soldiers as dependent on the fraction of those who, once disclosed, reveal also their colleagues. The simulation is immersed in the historical context of the Polish Home Army under the communist rule in 1946-49.Comment: 7 pages, 5 figures, for the European Conference on Modelling and Simulation (ECMS 2015

    Majority-vote model on (3,4,6,4) and (3^4,6) Archimedean lattices

    Full text link
    On Archimedean lattices, the Ising model exhibits spontaneous ordering. Two examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition is observed in this system. The calculated values of the critical noise parameter are q_c=0.091(2) and q_c=0.134(3) for (3,4,6,4) and (3^4,6) Archimedean lattices, respectively. The critical exponents beta/nu, gamma/nu and 1/nu for this model are 0.103(6), 1.596(54), 0.872(85) for (3,4,6,4) and 0.114(3), 1.632(35), 0.978(104) for (3^4,6) Archimedean lattices. These results differs from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks. The effective dimensionality of the system [D_{eff}(3,4,6,4)=1.802(55) and D_{eff}(3^4,6)=1.860(34)] for these networks are reasonably close to the embedding dimension two.Comment: 6 pages, 7 figures in 12 eps files, RevTex

    Avalanches in complex spin networks

    Full text link
    We investigate the magnetization reversal processes on classes of complex spin networks with antiferromagnetic interaction along the network links. With slow field ramping the hysteresis loop and avalanches of spin flips occur due to topological inhomogeneity of the network, even without any disorder of the magnetic interaction [B. Tadic, et al., Phys. Rev. Lett. 94 (2005) 137204]. Here we study in detail properties of the magnetization avalanches, hysteresis curves and density of domain walls and show how they can be related to the structural inhomogeneity of the network. The probability distribution of the avalanche size, N_s(s), displays the power-law behaviour for small s, i.e. N_s(s)\propto s^{-\alpha}. For the scale-free networks, grown with preferential attachment, \alpha increases with the connectivity parameter M from 1.38 for M=1 (trees) to 1.52 for M=25. For the exponential networks, \alpha is close to 1.0 in the whole range of M.Comment: 16 pages, 10 figures in 29 eps file

    Recovering Zipf's law in intercontinental scientific collaboration

    Full text link
    Scientific cooperation on an international level has been well studied in the literature. However, much less is known about this cooperation on the intercontinental level. In this paper, we address this issue by creating a collection of approximately 13.8 million publications around the papers by one of the highly cited author working in complex networks and their applications. The obtained rank-frequency distribution of the probability of sequences describing continents and number of countries -- with which authors of papers are affiliated -- follows the power law with an exponent 1.9108(15)-1.9108(15). Such a dependence is known in the literature as Zipf's law and it has been originally observed in linguistics, later it turned out that it is very commonly observed in various fields. The number of distinct ``continent (number of countries)'' sequences in a function of the number of analyzed papers grows according to power law with exponent 0.527(14)0.527(14), i.e. it follows Heap's law.Comment: 6 pages, 3 figures, 4 table

    Reshuffling spins with short range interactions: When sociophysics produces physical results

    Full text link
    Galam reshuffling introduced in opinion dynamics models is investigated under the nearest neighbor Ising model on a square lattice using Monte Carlo simulations. While the corresponding Galam analytical critical temperature T_C \approx 3.09 [J/k_B] is recovered almost exactly, it is proved to be different from both values, not reshuffled (T_C=2/arcsinh(1) \approx 2.27 [J/k_B]) and mean-field (T_C=4 [J/k_B]). On this basis, gradual reshuffling is studied as function of 0 \leq p \leq 1 where p measures the probability of spin reshuffling after each Monte Carlo step. The variation of T_C as function of p is obtained and exhibits a non-linear behavior. The simplest Solomon network realization is noted to reproduce Galam p=1 result. Similarly to the critical temperature, critical exponents are found to differ from both, the classical Ising case and the mean-field values.Comment: 11 pages, 5 figures in 6 eps files, to appear in IJMP

    Square lattice site percolation at increasing ranges of neighbor interactions

    Full text link
    We report site percolation thresholds for square lattice with neighbor interactions at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (N2^2), next nearest neighbors (N3^3), next next nearest neighbors (N4^4) and fifth nearest neighbors (N6^6) yield the same pc=0.592...p_c=0.592.... At odds, fourth nearest neighbors (N5^5) give pc=0.298...p_c=0.298.... These results are given an explanation in terms of symmetry arguments. We then consider combinations of various ranges of interactions with (N2^2+N3^3), (N2^2+N4^4), (N2^2+N3^3+N4^4) and (N2^2+N5^5). The calculated associated thresholds are respectively pc=0.407...,0.337...,0.288...,0.234...p_c=0.407..., 0.337..., 0.288..., 0.234.... The existing Galam--Mauger universal formula for percolation thresholds does not reproduce the data showing dimension and coordination number are not sufficient to build a universal law which extends to complex lattices.Comment: 4 pages, revtex

    How pairs of partners emerge in an initially fully connected society

    Full text link
    A social group is represented by a graph, where each pair of nodes is connected by two oppositely directed links. At the beginning, a given amount p(i)p(i) of resources is assigned randomly to each node ii. Also, each link r(i,j)r(i,j) is initially represented by a random positive value, which means the percentage of resources of node ii which is offered to node jj. Initially then, the graph is fully connected, i.e. all non-diagonal matrix elements r(i,j)r(i,j) are different from zero. During the simulation, the amounts of resources p(i)p(i) change according to the balance equation. Also, nodes reorganise their activity with time, going to give more resources to those which give them more. This is the rule of varying the coefficients r(i,j)r(i,j). The result is that after some transient time, only some pairs (m,n)(m,n) of nodes survive with non-zero p(m)p(m) and p(n)p(n), each pair with symmetric and positive r(m,n)=r(n,m)r(m,n)=r(n,m). Other coefficients r(m,in)r(m,i\ne n) vanish. Unpaired nodes remain with no resources, i.e. their p(i)=0p(i)=0, and they cease to be active, as they have nothing to offer. The percentage of survivors (i.e. those with with p(i)p(i) positive) increases with the velocity of varying the numbers r(i,j)r(i,j), and it slightly decreases with the size of the group. The picture and the results can be interpreted as a description of a social algorithm leading to marriages.Comment: 7 pages, 3 figure

    Scaling properties of the Penna model

    Full text link
    We investigate the scaling properties of the Penna model, which has become a popular tool for the study of population dynamics and evolutionary problems in recent years. We find that the model generates a normalised age distribution for which a simple scaling rule is proposed, that is able to reproduce qualitative features for all genome sizes.Comment: 4 pages, 4 figure
    corecore