96 research outputs found
Uncertainty Analysis of the Life-Cycle Greenhouse Gas Emissions and Energy Renewability of Biofuels
Biofuels can contribute substantially to energy security and socio-economic development. However, significant disagreement and controversies exist regarding the actual energy and greenhouse gas (GHG) savings of biofuels displacing fossil fuels. A large number of publications that analyze the life-cycle of biofuel systems present varying and sometimes contradictory conclusions, even for the same biofuel type (Farrell et al., 2006; Malca and Freire, 2004, 2006, 2011; Gnansounou et al., 2009; van der Voet et al., 2010; Borjesson and Tufvesson, 2011). Several aspects have been found to affect the calculation of energy and GHG savings, namely land use change issues and modeling assumptions (Gnansounou et al., 2009; Malca and Freire, 2011). Growing concerns in recent years that the production of biofuels might not respect minimum sustainability requirements led to the publication of Directive 2009/28/EC in the European Union (EPC 2009) and the National Renewable Fuel Standard Program in the USA (EPA 2010), imposing for example the attainment of minimum GHG savings compared to fossil fuels displaced. The calculation of life cycle GHG emission savings is subject to significant uncertainty, but current biofuel life-cycle studies do not usually consider uncertainty. Most often, life-cycle assessment (LCA) practitioners build deterministic models to approximate real systems and thus fail to capture the uncertainty inherent in LCA (Lloyd and Ries, 2007). This type of approach results in outcomes that may be erroneously interpreted, or worse, may promote decisions in the wrong direction (Lloyd and Ries, 2007; Plevin, 2010). It is, therefore, important for sound decision support that uncertainty is taken into account in the life-cycle modeling of biofuels. Under this context, this chapter has two main goals: i) to present a robust framework to incorporate uncertainty in the life-cycle modeling of biofuel systems; and ii) to describe the application of this framework to vegetable oil fuel in Europe. In addition, results are compared with conventional (fossil) fuels to evaluate potential savings achieved through displacement. Following this approach, both the overall uncertainty and the relative importance of the different types of uncertainty can be assessed. Moreover, the relevance of addressing uncertainty issues in biofuels life-cycle studies instead of using average deterministic approaches can be evaluated, namely through identification of important aspects that deserve further study to reduce the overall uncertainty of the system
Study of Metal/Polymer Interface of Parts Produced by a Hybrid Additive Manufacturing Approach
Acknowledgments
This research work was supported by the Portuguese Foundation for Science and Technology (FCT) and Centro2020 through the Project reference: UID/Multi/04044/2013, PAMI - ROTEIRO/0328/2013 (Nº 022158) and Portuguese National Innovation Agency (ANI) through the Project reference POCI-01-0247-FEDER-017963, NEXT.parts – Next Generation of Advanced Hybrid Parts (co-promotion nº 17963).The additive manufacturing of multimaterial parts, e.g. metal/plastic, with functional
gradients represents for current market demands a great potential of applications [1]. Metal Polymer parts combine the good mechanical properties of the metals with the low weight characteristics, good impact strength, good vibration and sound absorption of the polymers. Nevertheless, the coupling between metal and polymers is a great challenge since the processing factors for each one of them are very different. In addition, a system that makes the hybrid processing - metal/polymer - using
only one operation is unknown [2, 3]. To overcome this drawback, a hybrid additive manufacturing system based on the additive technologies of SLM and SL was recently developed by the authors. The SLM and SL techniques joined enabling the production of a photopolymerization of the polymer in the voids of a 3D metal mesh previously produced by SLM [4]. The purpose of this work is the study on the metal/polymer interface of hybrid parts manufactured from the hybrid additive manufacturing system [5]. For this, a core of tool steel (H13) and two different types of photopolymers:
one elastomeric (BR3D-DL-Flex) and another one rigid (BR3D-DL-Hard) are considered. A set of six samples for each one of metal core/polymer combination was manufactured and submitted to tensile tests.info:eu-repo/semantics/publishedVersio
The Use of Polypropylene and High-Density Polyethylene on Cork Plastic Composites for Large Scale 3D Printing
Acknowledgements This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº 022158). In addition, the authors acknowledge the funding from the project World of Outstanding Wool and Wood (WOWW), POCI-01-0247-FEDER-017574 from the Portuguese National Innovation Agency. The authors gratefully acknowledge to Amorim Cork Composites for the cork powder. We thank Ana O. Tojeira and Ana R. Fonseca for the support provided in performing the laboratorial tests as Laboratory Managing Engineers.This work focuses on studying the possibility of 3D printing of composite materials
composed by cork and a polymer matrix (CPC). Initially the cork was mixed with two types of polymers (HDPE and PP) in different proportions and later processed using extrusion and injection. The composites were tested to study the physical, chemical and mechanical properties. The material was then tested on a large-scale 3D printer to study its feasibility and the ability to produce new products through 3D printing. Attention was focused on the use of pure cork, varying the concentration of cork and coupling agent in thermoplastic matrix composites of PP and HDPE. It was demonstrated that the increase of 5wt.% of coupling agent in the two types of polymers
significantly improved the mechanical properties and adhesion between the phases but the increase
in cork concentration decreased mechanical properties and crystallinity. The CPCs with PP showed
to have better mechanical properties, better aesthetic and internal structural quality, and easier
processability than those with HDPE matrix. Nevertheless, the HDPE CPCs showed a high degree
of crystallization.
Concerning 3D printing, it was demonstrated the possibility of making new products based on
natural cork fibers, showing promising results, although additional research is still needed to
optimize the process.info:eu-repo/semantics/publishedVersio
A Brief Review on Processes for Cartilage Repair
The aim of the present review was to highlight some of the available processes for cartilage repair and regeneration. Considering the high impact that cartilage degeneration has in the quality of life, in an aging society, efforts to promote better treatments are crucial. The current available processes have advantages and drawbacks, that should be further investigated, aiming to obtain tailored and successful repair. Finally, some suggestions for tissue engineering strategies are presented, so that the scientific community can debate pros and cons to be investigated.info:eu-repo/semantics/publishedVersio
Comparative Analysis of Impact Strength among Various Polymeric Materials for Orthotic Production
The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT, I.P.) for its financial support through the CEMMPRE projects UIDB/00285/2020 and LA/P/0112/2020, CDRSP projects UIDB/04044/2020 and UIDP/04044/2020, and UNIDEMI projects UIDB/00667/2020 and UIDP/00667/2020.
Publisher Copyright:
© 2024 by the authors.Orthotic devices play an important role in medical treatment, addressing various pathologies and promoting patient recovery. Customization of orthoses to fit individual patient morphologies and needs is essential for optimal functionality and patient comfort. The advent of additive manufacturing has revolutionized the biomedical field, offering advantages such as cost reduction, increased personalization, and enhanced dimensional adaptability for orthotics manufacturing. This research focuses on the impact strength of nine polymeric materials printed by additive manufacturing, including an evaluation of the materials’ performance under varying conditions comprising different printing directions (vertical and horizontal) and exposure to artificial sweat for different durations (0 days, 24 days, and 189 days). The results showed that Nylon 12 is good for short-term (24 days) immersion, with absorbed energies of 78 J and 64 J for the vertical and horizontal directions, whereas Polycarbonate (PC) is good for long-term immersion (189 days), with absorbed energies of 66 J and 78 J for the vertical and horizontal directions. Overall, the findings contribute to a better understanding of the suitability of these materials for biomedical applications, considering both short-term and long-term exposure to physiological and environmental conditions.publishersversionpublishe
Life-cycle assessment of microalgae biodiesel: a review
Microalgae are an attractive way to produce biofuels due to the ability to accumulate lipids and very high photosynthetic yields. This article presents a review of life-cycle assessment studies of microalgae biodiesel production, including an analysis of modeling choices and assumptions. A high variation in GHG emissions (between -0.75 and 2.9 kg CO2eq MJ-1) was found and the main causes were investigated, namely modeling choices (e.g. the approach used to deal with multifunctionality), and a high parameter uncertainty in microalgae cultivation, harvesting and oil extraction processes
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
Funding Information: The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT, I.P.) for its financial support through the UNIDEMI projects UIDB/00667/2020 and UIDP/00667/2020, and CEMMPRE projects UIDB/00285/2020 and LA/P/0112/2020, and CDRSP projects UIDB/04044/2020 and UIDP/04044/2020, and GDA\u0143SK TECH CORE EDU FACILITIES, grant no. 23/2021/EDU, Laboratory of Additive Manufacturing Methods and Reverse Engineering. Publisher Copyright: © 2024 by the authors.The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting the materials’ potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests.publishersversionpublishe
Physical rehabilitation programs for bedridden patients with prolonged immobility: a scoping review
Bedridden patients usually stay in bed for long periods, presenting several problems caused by immobility, leading to a long recovery process. Thus, identifying physical rehabilitation programs for bedridden patients with prolonged immobility requires urgent research. Therefore, this scoping review aimed to map existing physical rehabilitation programs for bedridden patients with prolonged immobility, the rehabilitation domains, the devices used, the parameters accessed, and the context in which these programs were performed. This scoping review, guided by the Joanna Briggs Institute’s (JBI) methodology and conducted in different databases (including grey literature), identified 475 articles, of which 27 were included in this review. The observed contexts included research institutes, hospitals, rehabilitation units, nursing homes, long-term units, and palliative care units. Most of the programs were directed to the musculoskeletal domain, predominantly toward the lower limbs. The devices used included lower limb mobilization, electrical stimulation, inclined planes, and cycle ergometers. Most of the evaluated parameters were musculoskeletal, cardiorespiratory, or vital signs. The variability of the programs, domains, devices and parameters found in this scoping review revealed no uniformity, a consequence of the personalization and individualization of care, which makes the development of a standard intervention program challenging.This research was co-financed by the European Regional Development Fund (ERDF)
through the partnership agreement Portugal 2020—Operational Programme for Competitiveness
and Internationalization (COMPETE2020) under the project POCI-01-0247-FEDER-047087 ABLEFIT:
Desenvolvimento de um Sistema avançado para Reabilitação
- …