9 research outputs found
Recommended from our members
A Study of Heat Transfer at the Cavity-Polymer Interface in Microinjection Moulding. The effects of processing conditions, cavity surface roughness and polymer physical properties on the heat transfer coefficient
This thesis investigates the cooling behaviour of polymers during the
microinjection moulding process. The work included bespoke experimental
mould design and manufacturing, material characterisation, infra-red
temperature measurements, cooling analysis and cooling prediction using
commercial simulation software.
To measure surface temperature of the polymers, compounding of
polypropylene and polystyrene with carbon black masterbatch was performed to
make materials opaque for the IR camera. The effects of addition of carbon
black masterbatch were analysed using differential scanning calorimetry and
Fourier transform infrared spectroscopy.
Sapphire windows formed part of the mould wall and allowed thermal
measurements using an IR camera. They were laser machined on their inside
surfaces to generate a range of finishes and structures. Their topographies
were analysed using laser confocal microscope. The surface energy of sapphire
windows was measured and compared to typical mould steel, employing a
contact angle measurement technique and calculated using Owens-Wendt
theory. A heating chamber was designed and manufactured to study spreading
of polymer melts on sapphire and steel substrates.
A design of experiments approach was taken to investigate the influence of
surface finish and the main processing parameters on polymer cooling during
microinjection moulding. Cooling curves were obtained over an area of 1.92 by 1.92 mm of the sapphire window. These experiments were conducted on the
Battenfeld Microsystem 50 microinjection moulding machine.
A simulation study of polymer cooling during the microinjection moulding
process was performed using Moldflow software. Particular interest was paid to
the effect of the values of the interfacial heat transfer coefficient (HTC) on the
simulated cooling predictions. Predicted temperature curves were compared to
experimentally obtained temperature distributions, to obtain HTC values valid
for the material and processing parameters
Recommended from our members
Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges
YesPolymeric hydrogels are a complex class of materials with one common featureâthe ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoptionâregulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval
Recommended from our members
Thermal contact resistance in micromoulding.
yesThis work outlines a novel approach for determining thermal contact resistance (TCR) in micromoulding. The proposed technique aims to produce TCR predictions with known confidence values and combines experimental evidence (temperature fields and contact angle measurements) with various mathematical modelling procedures (parametric representation of surfaces, finite element analysis and stochastic processes). Here, emphasis is made on the mathematical aspects of the project. In particular, we focus on the description of the parametric surface representation technique based on the use of partial differential equations, known as the PDE method, which will be responsible for characterizing and compressing micro features in either moulds or surface tools.EPSR
Recommended from our members
Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development
YesUnderstanding structure-property relationships is critical for the development of new drug delivery systems. This study investigates the properties of Pluronic smart hydrogel formulations for future use as injectable controlled drug carriers. The smart hydrogels promise to enhance patient compliance, decrease side effects and reduce dose and frequency. Pharmaceutically, these systems are attractive due to their unique sol-gel phase transition in the body, biocompatibility, safety and injectability as solutions before transforming into gel matrices at body temperature. We quantify the structural changes of F127 systems under controlled temperature after flow, as experienced during real bodily injection. Empirical formulae combining the coupled thermal and shear dependency are produced to aid future application of these systems. Induced structural transitions measured in-situ by small angle x-ray and neutron scattering reveal mixed oriented structures that can be exploited to tailor the drug release profile
Evaluation of heat transfer at the cavity-polymer interface in microinjection moulding based on experimental and simulation study
YesIn polymer melt processing, the heat transfer coefficient (HTC) determines the heat flux across the interface of the polymer melt and the mould wall. The HTC is a dominant parameter in cooling simulations especially for microinjection moulding, where the high surface to volume ratio of the part results in very rapid cooling. Moreover, the cooling rate can have a significant influence on internal structure, morphology and resulting physical properties. HTC values are therefore important and yet are not well quantified. To measure HTC in micromoulding, we have developed an experimental setup consisting of a special mould, and an ultra-high speed thermal camera in combination with a range of windows. The windows were laser machined on their inside surfaces to produce a range of surface topographies. Cooling curves were obtained for two materials at different processing conditions, the processing variables explored being melt and mould temperature, injection speed, packing pressure and surface topography. The finite element package Moldflow was used to simulate the experiments and to find the HTC values that best fitted the cooling curves, so that HTC is known as a function of the process variables explored. These results are presented and statistically analysed. An increase in HTC from the standard value of 2500 W/m2C to values in the region 7700 W/m2C was required to accurately model the observations.EPSR
Comparison of crystallization characteristics and mechanical properties of polypropylene processed by ultrasound and conventional micro injection molding
YesUltrasound injection molding has emerged as an alternative production route for the manufacturing of micro-scale polymeric components, where it offers significant benefits over the conventional micro-injection molding process. In this work, the effects of ultrasound melting on the mechanical and morphological properties of micro-polypropylene parts were characterized. The ultrasound injection molding process was experimentally compared to the conventional micro-injection molding process using a novel mold, which allows mounting on both machines and visualization of the melt flow for both molding processes. Direct measurements of the flow front speed and temperature distributions were performed using both conventional and thermal high-speed imaging techniques. The manufacturing of micro-tensile specimens allowed the comparison of the mechanical properties of the parts obtained with the different processes. The results indicated that the ultrasound injection molding process could be an efficient alternative to the conventional process
Thin-wall injection molding of polystyrene parts with coated and uncoated cavities
Low-friction mold surface coatings can be used to promote filling of thin-wall parts through reduction of the melt flow resistance by causing wall slip at the polymer-mold interface. This work investigates the effects of different mold coatings (DLC, CrN and CrTiNbN) on the flow resistance of molten polystyrene in thin-wall injection molding. The design of the mold allowed high-speed visualization of the molten polymer flow during the filling phase and measurement of the velocity profile across the cavity thickness. The evaluation of the speed profiles allowed the characterization of the wall-slip phenomenon, indicating the absence of conventional âfountain-flowâ filling mechanism. The results indicate that a DLC deposited on a chrome substrate can significantly reduce the flow resistance of polystyrene, by increasing the slip velocity of polymer melt in contact with the mold surface. Moreover, the contact angle of molten polystyrene over the considered coatings was found to be inversely proportional to the melt flow resistance, indicating the importance of the adhesion at the polymer-mold interface
Recommended from our members
Micro and nano structuring of sapphire for micro injection process investigation,
NoThe work presented in this paper contributes to a wider research objective aiming at gaining a better understanding of the injection
moulding process at microscales. More specifically, it contributes to the development of a new modelling approach combining
experimental observation and mathematical modelling to characterise thermal contact resistance that results from the
imperfections present on the surfaces when two surfaces are brought in contact. Thus, this paper describes micro and nano
structuring technologies (Focus Ion beam and Laser Ablation) used to structure sapphire inserts that are used as âwindowsâ in the
injection moulding process, allowing thermal measurements with a high speed thermal camera whilst sapphire structures are filled
with polymer melt.The Engineering and
Physical Sciences Research Council (EPSRC) under the
grant EP/I014551/1 and the Interreg IVB project âECOefficient
LASER technology for FACTories of the futureâ