9 research outputs found

    Evaluation of heat transfer at the cavity-polymer interface in microinjection moulding based on experimental and simulation study

    Get PDF
    YesIn polymer melt processing, the heat transfer coefficient (HTC) determines the heat flux across the interface of the polymer melt and the mould wall. The HTC is a dominant parameter in cooling simulations especially for microinjection moulding, where the high surface to volume ratio of the part results in very rapid cooling. Moreover, the cooling rate can have a significant influence on internal structure, morphology and resulting physical properties. HTC values are therefore important and yet are not well quantified. To measure HTC in micromoulding, we have developed an experimental setup consisting of a special mould, and an ultra-high speed thermal camera in combination with a range of windows. The windows were laser machined on their inside surfaces to produce a range of surface topographies. Cooling curves were obtained for two materials at different processing conditions, the processing variables explored being melt and mould temperature, injection speed, packing pressure and surface topography. The finite element package Moldflow was used to simulate the experiments and to find the HTC values that best fitted the cooling curves, so that HTC is known as a function of the process variables explored. These results are presented and statistically analysed. An increase in HTC from the standard value of 2500 W/m2C to values in the region 7700 W/m2C was required to accurately model the observations.EPSR

    Comparison of crystallization characteristics and mechanical properties of polypropylene processed by ultrasound and conventional micro injection molding

    Get PDF
    YesUltrasound injection molding has emerged as an alternative production route for the manufacturing of micro-scale polymeric components, where it offers significant benefits over the conventional micro-injection molding process. In this work, the effects of ultrasound melting on the mechanical and morphological properties of micro-polypropylene parts were characterized. The ultrasound injection molding process was experimentally compared to the conventional micro-injection molding process using a novel mold, which allows mounting on both machines and visualization of the melt flow for both molding processes. Direct measurements of the flow front speed and temperature distributions were performed using both conventional and thermal high-speed imaging techniques. The manufacturing of micro-tensile specimens allowed the comparison of the mechanical properties of the parts obtained with the different processes. The results indicated that the ultrasound injection molding process could be an efficient alternative to the conventional process

    Thin-wall injection molding of polystyrene parts with coated and uncoated cavities

    No full text
    Low-friction mold surface coatings can be used to promote filling of thin-wall parts through reduction of the melt flow resistance by causing wall slip at the polymer-mold interface. This work investigates the effects of different mold coatings (DLC, CrN and CrTiNbN) on the flow resistance of molten polystyrene in thin-wall injection molding. The design of the mold allowed high-speed visualization of the molten polymer flow during the filling phase and measurement of the velocity profile across the cavity thickness. The evaluation of the speed profiles allowed the characterization of the wall-slip phenomenon, indicating the absence of conventional ‘fountain-flow’ filling mechanism. The results indicate that a DLC deposited on a chrome substrate can significantly reduce the flow resistance of polystyrene, by increasing the slip velocity of polymer melt in contact with the mold surface. Moreover, the contact angle of molten polystyrene over the considered coatings was found to be inversely proportional to the melt flow resistance, indicating the importance of the adhesion at the polymer-mold interface
    corecore