11 research outputs found
Demoethical Model of Sustainable Development of Society: A Roadmap towards Digital Transformation
This study aims to explore a demoethical model for sustainable development in modern society. It proposes an approach that focuses on organizing activities to improve sustainable development. Specifically, it presents a demoethical model relevant to Society 5.0 and Industry 5.0 organizations. The objective is to identify demoethical values that can drive sustainable development in the era of digitalization. Through a literature review and analysis, this study identifies key components of the demoethical model and provides practical recommendations for stakeholders involved in digital transformation. The analysis of demoethical norms and phenomena, such as education, nurturing, mind, knowledge, science, and honest work, has enabled the identification of values that align with sustainable development in society. The results of the study demonstrate that the notion of a demoethical foundation for sustainability is rooted in the concept of spirituality as the basis for a new societal development scenario and its relationship with nature. The study shows that ideas about the demoethical basis of sustainability are based on the priority of spirituality as the basis of a new scenario for the development of society, as well as the integration of demographic, socio-economical, and ecological components in system-wide modeling
Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis
Background During Drosophila spermatogenesis, testis-specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors (tTAF) contribute to activation of hundreds of genes required for meiosis and spermiogenesis. Intriguingly, tMAC is paralogous to the broadly expressed complex Myb-MuvB (MMB)/dREAM and Mip40 protein is shared by both complexes. tMAC acts as a gene activator in spermatocytes, while MMB/dREAM was shown to repress gene activity in many cell types. Results Our study addresses the intricate interplay between tMAC, tTAF, and MMB/dREAM during spermatogenesis. We used cell type-specific DamID to build the DNA-binding profiles of Cookie monster (tMAC), Cannonball (tTAF), and Mip40 (MMB/dREAM and tMAC) proteins in male germline cells. Incorporating the whole transcriptome analysis, we characterized the regulatory effects of these proteins and identified their gene targets. This analysis revealed that tTAFs complex is involved in activation of achi, vis, and topi meiosis arrest genes, implying that tTAFs may indirectly contribute to the regulation of Achi, Vis, and Topi targets. To understand the relationship between tMAC and MMB/dREAM, we performed Mip40 DamID in tTAF- and tMAC-deficient mutants demonstrating meiosis arrest phenotype. DamID profiles of Mip40 were highly dynamic across the stages of spermatogenesis and demonstrated a strong dependence on tMAC in spermatocytes. Integrative analysis of our data indicated that MMB/dREAM represses genes that are not expressed in spermatogenesis, whereas tMAC recruits Mip40 for subsequent gene activation in spermatocytes. Conclusions Discovered interdependencies allow to formulate a renewed model for tMAC and tTAFs action in Drosophila spermatogenesis demonstrating how tissue-specific genes are regulated
Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome
<p>Abstract</p> <p>Background</p> <p>Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of <it>D. melanogaster</it>.</p> <p>Results</p> <p>Here we demonstrate that these underreplicated regions (URs) have a low density of <it>P</it>-<it>element </it>and <it>piggyBac </it>insertions compared to the genome average or neighboring regions. In contrast, <it>Minos</it>-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single <it>P</it>-<it>element </it>by analysis of eye color determined by the mini-<it>white </it>marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of <it>P-elemen</it>ts and <it>piggyBac</it>s in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of <it>P-elements </it>and <it>piggyBac </it>insertions. In transgenes with two marker genes suppression of mini-<it>white </it>gene in eye coincides with suppression of <it>yellow </it>gene in bristles.</p> <p>Conclusions</p> <p>Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.</p
The Role of the Photon Counting Loss Effect in Time-Resolved Measurements of Fluorescence Anisotropy
Determining the rate of rotation of molecules from their fluorescence anisotropy decay curves is a powerful method for studying molecular systems in biological applications. The single photon count detection systems used for this have a nonlinear dependence of the photon counting rate on the fluorescence intensity flux (photon counting loss effect), which can lead to a number of artifacts. Using metal complexes of phthalocyanines as a test sample, we have shown that such a nonlinearity can cause distortions in the determination of the fluorescence anisotropy lifetime and the asymptotic fluorescence anisotropy. We also assessed the dependence of the described phenomena on temperature and estimated the manifestations of the photon counting loss effect in the case of photobleaching of the fluorophores
ASIP Promoter Variants Predict the Sesame Coat Color in Shiba Inu Dogs
Animals exhibit a wide variety of genetically determined coat colors and pigmentation patterns that serve important roles in adaptation and communication. Although the genetics of the main coat colors in dogs have been studied extensively, there are types of coat pigmentation that have not been explained yet. Recently, an association between the variants in the ASIP gene Ventral (VP) and Hair Cycle (HCP) promoters with different coat colors in dogs has been established. Here, we used the new findings as a basis to investigate the genetics of the red sesame coat color in Shiba Inu dogs. Our study revealed that red sesame dogs carry a specific heterozygous ASIP promoter diplotype, VP2-HCP1/VP2-HCP3, where VP2-HCP1 is responsible for the red coat with a dark overlay, and VP2-HCP3 for a tan point-like pattern. This finding explains the inheritance of this coat color pattern and can be used by breeders to produce dogs with this rare phenotype. A comparison of sesame dogs (VP2-HCP1/VP2-HCP3) to a dog homozygous for the VP2-HCP1 promoter haplotype suggests that the incomplete dominance between the ASIP alleles may be involved in the sesame coat formation. These results are in good agreement with the new model explaining how different levels of ASIP gene expression affect the regulation of pigment synthesis in melanocytes
Functional dissection of Drosophila melanogaster SUUR protein influence on H3K27me3 profile
Abstract Background In eukaryotes, heterochromatin replicates late in S phase of the cell cycle and contains specific covalent modifications of histones. SuUR mutation found in Drosophila makes heterochromatin replicate earlier than in wild type and reduces the level of repressive histone modifications. SUUR protein was shown to be associated with moving replication forks, apparently through the interaction with PCNA. The biological process underlying the effects of SUUR on replication and composition of heterochromatin remains unknown. Results Here we performed a functional dissection of SUUR protein effects on H3K27me3 level. Using hidden Markow model-based algorithm we revealed SuUR-sensitive chromosomal regions that demonstrated unusual characteristics: They do not contain Polycomb and require SUUR function to sustain H3K27me3 level. We tested the role of SUUR protein in the mechanisms that could affect H3K27me3 histone levels in these regions. We found that SUUR does not affect the initial H3K27me3 pattern formation in embryogenesis or Polycomb distribution in the chromosomes. We also ruled out the possible effect of SUUR on histone genes expression and its involvement in DSB repair. Conclusions Obtained results support the idea that SUUR protein contributes to the heterochromatin maintenance during the chromosome replication. A model that explains major SUUR-associated phenotypes is proposed
Fluorescence Quenching of Carboxy-Substituted Phthalocyanines Conjugated with Nanoparticles under High Stoichiometric Ratios
Background: The search of the approaches towards a photosensitizer’s conjugation with multifunctional nanoparticles is an important step in the development of photodynamic therapy techniques. Association of photosensitizer molecules with nanoparticles that perform the delivery function can lead to a change in the functional state of the photosensitizer. Methods: We studied the effects observed upon incorporation of octa- and hexadeca-carboxyphthalocyanines of zinc(II) and aluminum(III) (Pcs) into the polymer shell of nanoparticles with a semiconductor CdSe/CdS/ZnS core with various spectral and optical methods. Results: First, the interaction of Pc with the polymer shell leads to a change in the spectral properties of Pc; the effect strongly depends on the structure of the Pc molecule (number of carboxyl groups as well as the nature of the central cation in the macrocycle). Secondly, upon incorporation of several Pc molecules, concentration effects become significant, leading to Pc aggregation and/or nonradiative energy transfer between neighboring Pc molecules within a single nanoparticle. Conclusions: These processes lead to the decrease of a number of the Pc molecules in an excited state. Such effects should be taken into account during the development of multifunctional platforms for the delivery of photosensitizers, including the use of nanoparticles as enhancers of photosensitizer activity by energy transfer
Probing Red Blood Cell Membrane Microviscosity Using Fluorescence Anisotropy Decay Curves of the Lipophilic Dye PKH26
Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100–500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities