5 research outputs found

    In Silico Simulation of the Systemic Drug Exposure Following the Topical Application of Opioid Analgesics in Patients with Cutaneous Lesions

    No full text
    The use of opioid analgesics in treating severe pain is frequently associated with putative adverse effects in humans. Topical agents that are shown to have high efficacy with a favorable safety profile in clinical settings are great alternatives for pain management of multimodal analgesia. However, the risk of side effects induced by transdermal absorption and systemic exposure is of great concern as they are challenging to predict. The present study aimed to use “BIOiSIM” an artificial intelligence-integrated biosimulation platform to predict the transdermal disposition of opioid analgesics. The model successfully predicted their exposure following the topical application of central opioid agonist buprenorphine and peripheral agonist oxycodone in healthy human subjects with simulation of intra-skin exposure in subjects with burns and pressure wounds. The predicted plasma levels of analgesics were used to evaluate the safety of the therapeutic pain control in patients with the dermal structural impairments caused by acute (burns) or chronic cutaneous lesions (pressure wounds) with topical opioid analgesics

    Effects of Magnesium, Calcium, and Aluminum Chelation on Fluoroquinolone Absorption Rate and Bioavailability: A Computational Study

    No full text
    Fluoroquinolones (FQs) are a widespread class of broad-spectrum antibiotics prescribed as a first line of defense, and, in some cases, as the only treatment against bacterial infection. However, when administered orally, reduced absorption and bioavailability can occur due to chelation in the gastrointestinal tract (GIT) with multivalent metal cations acquired from diet, coadministered compounds (sucralfate, didanosine), or drug formulation. Predicting the extent to which this interaction reduces in vivo antibiotic absorption and systemic exposure remains desirable yet challenging. In this study, we focus on quinolone interactions with magnesium, calcium and aluminum as found in dietary supplements, antacids (Maalox) orally administered therapies (sucralfate, didanosine). The effect of FQ–metal complexation on absorption rate was investigated through a combined molecular and pharmacokinetic (PK) modeling study. Quantum mechanical calculations elucidated FQ–metal binding energies, which were leveraged to predict the magnitude of reduced bioavailability via a quantitative structure–property relationship (QSPR). This work will help inform clinical FQ formulation design, alert to possible dietary effects, and shed light on drug–drug interactions resulting from coadministration at an earlier stage in the drug development pipeline

    Integrating AI/ML Models for Patient Stratification Leveraging Omics Dataset and Clinical Biomarkers from COVID-19 Patients: A Promising Approach to Personalized Medicine

    No full text
    The COVID-19 pandemic has presented an unprecedented challenge to the healthcare system. Identifying the genomics and clinical biomarkers for effective patient stratification and management is critical to controlling the spread of the disease. Omics datasets provide a wealth of information that can aid in understanding the underlying molecular mechanisms of COVID-19 and identifying potential biomarkers for patient stratification. Artificial intelligence (AI) and machine learning (ML) algorithms have been increasingly used to analyze large-scale omics and clinical datasets for patient stratification. In this manuscript, we demonstrate the recent advances and predictive accuracies in AI- and ML-based patient stratification modeling linking omics and clinical biomarker datasets, focusing on COVID-19 patients. Our ML model not only demonstrates that clinical features are enough of an indicator of COVID-19 severity and survival, but also infers what clinical features are more impactful, which makes our approach a useful guide for clinicians for prioritization best-fit therapeutics for a given cohort of patients. Moreover, with weighted gene network analysis, we are able to provide insights into gene networks that have a significant association with COVID-19 severity and clinical features. Finally, we have demonstrated the importance of clinical biomarkers in identifying high-risk patients and predicting disease progression

    Hirsutanol A Attenuates Lipopolysaccharide-Mediated Matrix Metalloproteinase 9 Expression and Cytokines Production and Improves Endotoxemia-Induced Acute Sickness Behavior and Acute Lung Injury

    No full text
    Activated human monocytes/macrophages, which increase the levels of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, are the essential mechanisms for the progression of sepsis. In the present study, we determined the functions and mechanisms of hirsutanolA (HA), which is isolated from the red alga-derived marine fungus Chondrostereum sp. NTOU4196, on the production of pro-inflammatory mediators produced from lipopolysaccharide (LPS)-treated THP-1 cells. Our results showed that HA suppressed LPS-triggered MMP-9-mediated gelatinolysis and expression of protein and mRNA in a concentration-dependent manner without effects on TIMP-1 activity. Also, HA significantly attenuated the levels of TNF-α, IL-6, and IL-1β from LPS-treated THP-1 cells. Moreover, HA significantly inhibited LPS-mediated STAT3 (Tyr705) phosphorylation, IκBα degradation and ERK1/2 activation in THP-1 cells. In an LPS-induced endotoxemia mouse model, studies indicated that HA pretreatment improved endotoxemia-induced acute sickness behavior, including acute motor deficits and anxiety-like behavior. HA also attenuated LPS-induced phospho-STAT3 and pro-MMP-9 activity in the hippocampus. Notably, HA reduced pathologic lung injury features, including interstitial tissue edema, infiltration of inflammatory cells and alveolar collapse. Likewise, HA suppressed the induction of phospho-STAT3 and pro-MMP-9 in lung tissues. In conclusion, our results provide pharmacological evidence that HA could be a useful agent for treating inflammatory diseases, including sepsis
    corecore