53 research outputs found

    Diffraction-Based Experiments in Transmission Electron Microscopy: Lensing, Charging, and Amorphous Structures

    Get PDF
    The interaction between electrons with electromagnetic potentials is the basis for electron microscopy. To build electron microscopes and interpret the data collected through them, it is necessary to understand how electrons are influenced by potentials and how they influence the potentials within samples. By further understanding the information encoded in an electron wave after passing through a sample, new techniques for analyzing materials can be developed. Here, several methods to extend the capabilities of electron microscopy are proposed. It is demonstrated that a new form of electromagnetic lens can be produced by a torus-shaped lens with a poloidal current flow. The lensing effect is due to the magnetic vector potential in the absence of electromagnetic fields and can produce convex and concave lensing. The dynamics of charge buildup on insulating samples from the moment they are exposed to an electron beam are measured. These measurements reveal a non-uniform charge distribution in the illuminated area whose temporal development is dose-rate dependent. These results may be used to improve the resolution achievable in protein structure reconstructions. Finally, a new method to experimentally determine the structure of dominant short-range order structural motifs in amorphous materials is explored.Okinawa Institute of Science and Technology Graduate Universit

    Top-down approach using supercritical carbon dioxide ball milling for producing sub-10 nm Bi2Te3 grains

    Get PDF
    We compare Bi2Te3 powders prepared by conventional ball milling to powders milled in supercritical carbon dioxide (scCO2). We demonstrate that scCO2 milling overcomes size-reduction limitations reported for conventional milling. XRD and TEM reveal nanograins with smaller average sizes (< 10 nm) and narrower grain size distributions in the scCO2 milled case. scCO2 milling also preserves the crystallinity and shows less oxidation than conventional milling. This is the first report of Bi2Te3 with a sub-10 nm grain size whilst conserving high quality crystallinity, made using a top-down approach. Our study offers a route for developing unprecedentedly fine bulk nanostructured Bi2Te3-based thermoelectric materials

    High‐resolution archaellum structure reveals a conserved metal‐binding site

    Get PDF
    Many archaea swim by means of archaella. While the archaellum is similar in function to its bacterial counterpart, its structure, composition, and evolution are fundamentally different. Archaella are related to archaeal and bacterial type IV pili. Despite recent advances, our understanding of molecular processes governing archaellum assembly and stability is still incomplete. Here, we determine the structures of Methanococcus archaella by X-ray crystallography and cryo-EM. The crystal structure of Methanocaldococcus jannaschii FlaB1 is the first and only crystal structure of any archaellin to date at a resolution of 1.5 angstrom, which is put into biological context by a cryo-EM reconstruction from Methanococcus maripaludis archaella at 4 angstrom resolution created with helical single-particle analysis. Our results indicate that the archaellum is predominantly composed of FlaB1. We identify N-linked glycosylation by cryo-EM and mass spectrometry. The crystal structure reveals a highly conserved metal-binding site, which is validated by mass spectrometry and electron energy-loss spectroscopy. We show invitro that the metal-binding site, which appears to be a widespread property of archaellin, is required for filament integrity

    Transfection of IL-10 expression vectors into endothelial cultures attenuates α4β7-dependent lymphocyte adhesion mediated by MAdCAM-1

    Get PDF
    BACKGROUND: Enhanced expression of MAdCAM-1 (mucosal addressin cell adhesion molecule-1) is associated with the onset and progression of inflammatory bowel disease. The clinical significance of elevated MAdCAM-1 expression is supported by studies showing that immunoneutralization of MAdCAM-1, or its ligands reduce inflammation and mucosal damage in models of colitis. Interleukin-10 (IL-10) is an endogenous anti-inflammatory and immunomodulatory cytokine that has been shown to prevent inflammation and injury in several animal studies, however clinical IL-10 treatment remains insufficient because of difficulties in the route of IL-10 administration and its biological half-life. Here, we examined the ability of introducing an IL-10 expression vector into endothelial cultures to reduce responses to a proinflammatory cytokine, TNF-α METHODS: A human IL-10 expression vector was transfected into high endothelial venular ('HEV') cells (SVEC4-10); we then examined TNF-α induced lymphocyte adhesion to lymphatic endothelial cells and TNF-α induced expression of MAdCAM-1 and compared these responses to control monolayers. RESULTS: Transfection of the IL-10 vector into endothelial cultures significantly reduced TNF-α induced, MAdCAM-1 dependent lymphocyte adhesion (compared to non-transfected cells). IL-10 transfected endothelial cells expressed less than half (46 ± 6.6%) of the MAdCAM-1 induced by TNF-α (set as 100%) in non-transfected (control) cells. CONCLUSION: Our results suggest that gene therapy of the gut microvasculature with IL-10 vectors may be useful in the clinical treatment of IBD

    ZnO-Based Ultraviolet Photodetectors

    Get PDF
    Ultraviolet (UV) photodetection has drawn a great deal of attention in recent years due to a wide range of civil and military applications. Because of its wide band gap, low cost, strong radiation hardness and high chemical stability, ZnO are regarded as one of the most promising candidates for UV photodetectors. Additionally, doping in ZnO with Mg elements can adjust the bandgap largely and make it feasible to prepare UV photodetectors with different cut-off wavelengths. ZnO-based photoconductors, Schottky photodiodes, metal–semiconductor–metal photodiodes and p–n junction photodetectors have been developed. In this work, it mainly focuses on the ZnO and ZnMgO films photodetectors. We analyze the performance of ZnO-based photodetectors, discussing recent achievements, and comparing the characteristics of the various photodetector structures developed to date

    Charging Dynamics in Low-Dose Cryo-TEM Imaging

    No full text

    Temporal dynamics of charge buildup in cryo-electron microscopy

    No full text
    It is well known that insulating samples can accumulate electric charges from exposure to an electron beam. How the accumulation of charge affects imaging parameters and sample stability in transmission electron microscopy is poorly understood. To quantify these effects, it is important to know how the charge is distributed within the sample and how it builds up over time. In the present study, we determine the spatial distribution and temporal dynamics of charge accumulation on vitreous ice samples with embedded proteins through a combination of modeling and Fresnel diffraction experiments. Our data reveal a rapid evolution of the charge state on ice upon initial exposure to the electron beam accompanied by charge gradients at the interfaces between ice and carbon films. We demonstrate that ice film movement and charge state variations occur upon electron beam exposure and are dose-rate dependent. Both affect the image defocus through a combination of sample height changes and lensing effects. Our results may be used as a guide to improve sample preparation, data collection, and data processing for imaging of dose-sensitive samples
    corecore