20 research outputs found

    Exposures of EU W-CFC combined targets with QSPA Kh-50 plasma streams simulating ITER ELMs

    No full text
    Repeated load tests of special combined W-CFC samples were performed with QSPA plasma streams either resulting in strong melting of W surface layer or below the melting, but above the cracking threshold. Experiments show that in result of target exposures with heat load of 0.4 MJ/m2 (no melting) only cracks formation was found on both tungsten and CFC surfaces. It is obtained that enhanced evaporation of CFC results in additional shielding of tungsten surface by C cloud and protects W surface from evaporation even for essentially increased energy density in impacting plasma. Exposures of combined target with heat loads of 0.82 MJ/m2 resulted in strong melting of tungsten. Meshes of macro-cracks and micro-cracks as well as ripple structures are appeared on the resolidified surface.Проведено циклічні іспити спеціальних комбінованих зразків W-CFC з використанням плазмових потоків КСПП з варійованими енергетичними навантаженнями, які приводять до розвитого плавлення поверхневого шару W, або знаходяться нижче порога плавлення, але вище порога розтріскування. Експериментально показано, що в результаті опромінення мішеней з густиною енергії 0,4 MДж/м2 (відсутність плавлення) було зареєстровано тільки розтріскування поверхонь CFC і вольфраму. Зі збільшенням густини енергії розвинуте паротворення CFC приводить до додаткового екранування поверхні вольфраму шаром вуглецевої плазми і захищає поверхню W від паротворення навіть при істотно збільшеній густині енергії в плазмі, що налітає. Опромінення мішеней з тепловими навантаженнями 0,82 MДж/м2 приводить до інтенсивного плавлення вольфраму. Сітки макро-тріщин і мікро-тріщин, а також хвильова структура з'являються на повторно затверділій поверхні.Проведены циклические испытания специальных комбинированных образцов W-CFC с использованием плазменных потоков КСПУ с варьируемыми энергетическими нагрузками, которые приводят к развитому плавлению поверхностного слоя W, либо находятся ниже порога плавления, но выше порога растрескивания. Экспериментально показано, что в результате облучения мишеней плазменными потоками с плотностью энергии 0,4 MДж/м2 (отсутствие плавления) было зарегистрировано лишь растрескивание поверхностей CFC и вольфрама. С увеличением плотности энергии в плазменном потоке развитое парообразование CFC приводит к дополнительной экранировке поверхности вольфрама облаком углеродной плазмы и предохраняет поверхность W от испарения даже при существенно возросшей плотности энергии налетающей плазмы. Облучение мишеней с тепловыми нагрузками 0,82 MДж/м2 приводит к интенсивному плавлению вольфрама. Сетки макро-трещин и микро-трещин, а также волновые структуры появляются на повторно затвердевающей поверхности

    Calorimetric studies of the energy deposition on a material surface by plasma jets generated with QSPA and MPC devices

    No full text
    Studies of the energy deposition by plasma jets incident on a material surface are of topical interest for both the fusion and plasma technology applications. In this paper the results are reported of a comparative study of plasma energy deposition on different material surfaces exposed to plasma jets of various duration and energy density, generated using the QSPA Kh-50 and the MPC devices. The spatial distribution of plasma energy density and the heat load on the surface were measured with a movable calorimeter. The measurements demonstrate that in the case of an exposure to QSPA plasma jets the absorbed heat load is approximately equal to 55-60% of the energy in the incident plasma jet. In the case of plasma jets generated using the MPC device the heat load on the target surface and was practically the same as for the QSPA jets, and additional shielding effects were found to be negligible due to the short duration of plasma jets

    Characterization of dense plasma streams generated by MPC and their interaction with material surfaces

    No full text
    Comparative studies of the parameters both pure helium and helium-xenon plasma have been fulfilled in a magneto-plasma compressor (MPC). The current-voltage characteristics of MPC accelerating channel and the maximum plasma velocity of (6-8) x 106 cm/s changed negligibly under local xenon injection to compression zone. Nevertheless, the xenon addition causes a growth of maximal plasma pressure up to of 2.3 MPa, an increase of plasma radiation from the compression zone. The plasma density achieved 1018 cm

    High Power Plasma Interaction With Tungsten Grades in ITER Relevant Conditions

    Get PDF
    Experimental simulations of ITER-like transient events with relevant surface heat load parameters (energy density up to 1.1 MJ/m2 and the pulse duration of 0.25 ms) as well as particle loads (varied in wide range from 1023 to 1027 ion/m2 s) were carried out with a quasistationary plasma accelerator QSPA Kh-50. Particular attention was paid to elaboration of damage of tungsten as a main candidate material for ITER divertor surfaces and also as prospective material for DEMO design. Erosion features, cracks evolution and changes in their thickness with increasing exposition dose are studied for different W grades, including deformed material with elongated grains, as well as WTa5 and sintered tungsten

    The experimental and theoretical investigations of damage development and distribution in double-forged tungsten under plasma irradiation-initiated extreme heat loads

    No full text
    The influence of extreme heat loads, as produced by a multiple pulses of non-homogeneous flow of slow plasma (0.1–1 keV) and fast ions (100 keV), on double-forged tungsten (DFW) was investigated. For generation of deuterium plasma and fast deuterons, plasma-focus devices PF-12 and PF-1000 are used. Depending on devices and conditions, the power flux density of plasma varied in a range of 107–1010 W/cm2 with pulse duration of 50–100 ns. Power flux density of fast ions was 1010–1012 W/cm2 at the pulse duration of 10–50 ns. To achieve the combined effect of different kind of plasmas, the samples were later irradiated with hydrogen plasma (105 W/cm2, 0.25 ms) by a QSPA Kh-50 plasma generator. Surface modification was analysed by scanning electron microscopy (SEM) and microroughness measurements. For estimation of damages in the bulk of material, an electrical conductivity method was used. Investigations showed that irradiation of DFW with multiple plasma pulses generated a mesh of micro- and macrocracks due to high heat load. A comparison with single forged tungsten (W) and tungsten doped with 1% lanthanum-oxide (WL10) reveals the better crack-resistance of DFW. Also, sizes of cells formed between the cracks on the DFW’s surface were larger than in cases of W or WL10. Measurements of electrical conductivity indicated a layer of decreased conductivity, which reached up to 500 µm. It depended mainly on values of power flux density of fast ions, but not on the number of pulses. Thus, it may be concluded that bulk defects (weakening bonds between grains and crystals, dislocations, point-defects) were generated due to mechanical shock wave, which was generated by the fast ions flux. Damages and erosion of materials under different combined radiation conditions have also been discussed

    Transient plasma loads to the ITER divertor surfaces : simulation experiments with QSPA Kh - 50

    No full text
    Experimental simulations of International Thermonuclear Experimental Reactor (ITER) transient events with relevant heat load and particle load parameters have been performed with a quasi-stationary plasma accelerator QSPA Kh-50. Pulsed plasma guns PPA and IBIS were also used for comparative studies of surface damages appearing under varying plasma parameters and sorts of plasma ions. Particular attention is paid to the material erosion due to particles ejection from the tungsten surfaces both in the form of droplets and solid dust. Generation mechanisms of the dust in the course of ELM-like plasma impacts to the tungsten surfaces are discusse

    The experimental and theoretical investigations of damage development and distribution in double-forged tungsten under plasma irradiation-initiated extreme heat loads

    No full text
    The influence of extreme heat loads, as produced by a multiple pulses of non-homogeneous fl ow of slow plasma (0.1-1 keV) and fast ions (100 keV), on double-forged tungsten (DFW) was investigated. For generation of deuterium plasma and fast deuterons, plasma-focus devices PF-12 and PF-1000 are used. Depending on devices and conditions, the power flux density of plasma varied in a range of 107-1010 W/cm2 with pulse duration of 50-100 ns. Power flux density of fast ions was 1010-1012 W/cm2 at the pulse duration of 10-50 ns. To achieve the combined effect of different kind of plasmas, the samples were later irradiated with hydrogen plasma (105 W/cm2, 0.25 ms) by a QSPA Kh-50 plasma generator. Surface modification was analysed by scanning electron microscopy (SEM) and microroughness measurements. For estimation of damages in the bulk of material, an electrical conductivity method was used. Investigations showed that irradiation of DFW with multiple plasma pulses generated a mesh of micro- and macrocracks due to high heat load. A comparison with single forged tungsten (W) and tungsten doped with 1% lanthanum-oxide (WL10) reveals the better crack-resistance of DFW. Also, sizes of cells formed between the cracks on the DFW’s surface were larger than in cases of W or WL10. Measurements of electrical conductivity indicated a layer of decreased conductivity, which reached up to 500 μm. It depended mainly on values of power flux density of fast ions, but not on the number of pulses. Thus, it may be concluded that bulk defects (weakening bonds between grains and crystals, dislocations, point-defects) were generated due to mechanical shock wave, which was generated by the fast ions flux. Damages and erosion of materials under different combined radiation conditions have also been discussed
    corecore