349 research outputs found
Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data
Independent component analysis (ICA) has proven useful for modeling brain and
electroencephalographic (EEG) data. Here, we present a new, generalized method
to better capture the dynamics of brain signals than previous ICA algorithms.
We regard EEG sources as eliciting spatio-temporal activity patterns,
corresponding to, e.g., trajectories of activation propagating across cortex.
This leads to a model of convolutive signal superposition, in contrast with the
commonly used instantaneous mixing model. In the frequency-domain, convolutive
mixing is equivalent to multiplicative mixing of complex signal sources within
distinct spectral bands. We decompose the recorded spectral-domain signals into
independent components by a complex infomax ICA algorithm. First results from a
visual attention EEG experiment exhibit (1) sources of spatio-temporal dynamics
in the data, (2) links to subject behavior, (3) sources with a limited spectral
extent, and (4) a higher degree of independence compared to sources derived by
standard ICA.Comment: 21 pages, 11 figures. Added final journal reference, fixed minor
typo
Covariance-domain Dictionary Learning for Overcomplete EEG Source Identification
We propose an algorithm targeting the identification of more sources than
channels for electroencephalography (EEG). Our overcomplete source
identification algorithm, Cov-DL, leverages dictionary learning methods applied
in the covariance-domain. Assuming that EEG sources are uncorrelated within
moving time-windows and the scalp mixing is linear, the forward problem can be
transferred to the covariance domain which has higher dimensionality than the
original EEG channel domain. This allows for learning the overcomplete mixing
matrix that generates the scalp EEG even when there may be more sources than
sensors active at any time segment, i.e. when there are non-sparse sources.
This is contrary to straight-forward dictionary learning methods that are based
on the assumption of sparsity, which is not a satisfied condition in the case
of low-density EEG systems. We present two different learning strategies for
Cov-DL, determined by the size of the target mixing matrix. We demonstrate that
Cov-DL outperforms existing overcomplete ICA algorithms under various scenarios
of EEG simulations and real EEG experiments
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website
The electroencephalogram (EEG) provides a non-invasive, minimally
restrictive, and relatively low cost measure of mesoscale brain dynamics with
high temporal resolution. Although signals recorded in parallel by multiple,
near-adjacent EEG scalp electrode channels are highly-correlated and combine
signals from many different sources, biological and non-biological, independent
component analysis (ICA) has been shown to isolate the various source generator
processes underlying those recordings. Independent components (IC) found by ICA
decomposition can be manually inspected, selected, and interpreted, but doing
so requires both time and practice as ICs have no particular order or intrinsic
interpretations and therefore require further study of their properties.
Alternatively, sufficiently-accurate automated IC classifiers can be used to
classify ICs into broad source categories, speeding the analysis of EEG studies
with many subjects and enabling the use of ICA decomposition in near-real-time
applications. While many such classifiers have been proposed recently, this
work presents the ICLabel project comprised of (1) an IC dataset containing
spatiotemporal measures for over 200,000 ICs from more than 6,000 EEG
recordings, (2) a website for collecting crowdsourced IC labels and educating
EEG researchers and practitioners about IC interpretation, and (3) the
automated ICLabel classifier. The classifier improves upon existing methods in
two ways: by improving the accuracy of the computed label estimates and by
enhancing its computational efficiency. The ICLabel classifier outperforms or
performs comparably to the previous best publicly available method for all
measured IC categories while computing those labels ten times faster than that
classifier as shown in a rigorous comparison against all other publicly
available EEG IC classifiers.Comment: Intended for NeuroImage. Updated from version one with minor
editorial and figure change
Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach.
Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a "containerized" approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data "Levels," each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org)
High-frequency Broadband Modulations of Electroencephalographic Spectra
High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities
Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals
Energy consumption is an important issue in continuous wireless
telemonitoring of physiological signals. Compressed sensing (CS) is a promising
framework to address it, due to its energy-efficient data compression
procedure. However, most CS algorithms have difficulty in data recovery due to
non-sparsity characteristic of many physiological signals. Block sparse
Bayesian learning (BSBL) is an effective approach to recover such signals with
satisfactory recovery quality. However, it is time-consuming in recovering
multichannel signals, since its computational load almost linearly increases
with the number of channels.
This work proposes a spatiotemporal sparse Bayesian learning algorithm to
recover multichannel signals simultaneously. It not only exploits temporal
correlation within each channel signal, but also exploits inter-channel
correlation among different channel signals. Furthermore, its computational
load is not significantly affected by the number of channels. The proposed
algorithm was applied to brain computer interface (BCI) and EEG-based driver's
drowsiness estimation. Results showed that the algorithm had both better
recovery performance and much higher speed than BSBL. Particularly, the
proposed algorithm ensured that the BCI classification and the drowsiness
estimation had little degradation even when data were compressed by 80%, making
it very suitable for continuous wireless telemonitoring of multichannel
signals.Comment: Codes are available at:
https://sites.google.com/site/researchbyzhang/stsb
- …