214 research outputs found

    Possibilities of using Camelina sativa oil for producing biodiesel fuel

    Get PDF
    Biofuels for diesel engines are produced mainly from rapeseed oil in Lithuania and the Member States of the European Union. In order to minimise an adverse impact of biodiesel fuel on the food sector, it is necessary to look for alternative feedstocks for producing biodiesel fuel including the potential utilisation of the new kinds of oilseed crops and various fatty waste. Camelina (Camelina sativa) could be one of the kinds of such oilseed crops, and therefore the physical and chemical parameters of Camelina sativa oil and biodiesel fuel produced from this oil were determined and the conformity of quality parameters with the requirements of biofuel standard was evaluated. It was found that fatty acid methyl esters made from Camelina sativa oil had a high iodine value (164.6÷169.6 g I2 / 100 g oil), and therefore could be used as fuel for diesel engines only in the mixtures with methyl esters produced from animal fat or used for frying oil. It has been established that similar mixtures can contain 50÷60% of Camelina sativa oil methyl esters. The possibilities of increasing oxidation stability as well as improving the cold flow properties of ester mixtures were investigated. The most effective antioxidant – Ionol (optimal dosage of 500 ppm) and the most efficient depressants Wintron XC-30 (optimal dosage – 1500 ppm) and Infineum R-442 (optimal dosage – 1200 ppm) were selected

    Application of dolomite as a heterogeneous catalyst of biodiesel synthesis

    Get PDF
    Some of the more recent methods of obtaining biodiesel are based on heterogeneous catalysis, which has the advantage of multiple uses of a catalyst. Natural minerals, such as dolomite, opoca and serpentinites, could be promising for use in biodiesel synthesis. The purpose of this study was to optimise the reaction conditions for biodiesel synthesis from sunflower oil and methanol using dolomite as a catalyst. Optimum reaction conditions for the transesterification of sunflower oil with methanol, using dolomite calcined at the temperature of 850 °C, have been identified: the amount of the catalyst – 6%, the molar ratio of methanol to oil – 8:1, the reaction duration – 5 hours and the reaction temperature – 60 °C. The amount of Fatty Acid Methyl Esters (FAME) of the sunflower oil obtained – 97.6%. FAME is in conformity with the EN 14214:2003 standard, when 500 ppm of antioxidant Ionol and 500 ppm of depressant Infineum R-442 are added. The Cold Filter Plugging Point (CFPP) of FAME is reduced to7 °C by adding 500 ppm of Infineum R-442. This product can be used in summer in the countries that are placed in Class E, including Lithuania. It has been established that dolomite without regeneration can be used for the transesterification of sunflower oil 2 times

    Exhaust emissions from the engine running on multi-component fuel

    Get PDF
    Possible alternative raw materials for producing biodiesel fuel are as follows: Camelina sativa oil, fibre linseed oil and waste animal fat. The aim of this work was to analyse the emissions of the engine running on multi-component fuels containing fossil diesel fuel (D), linseed or Camelina sativa oil fatty acid methyl esters (LSME and CME respectively) and beef tallow (TME) fatty acid methyl esters. The concentration of fatty acid methyl esters (FAME) in the mixtures with fossil diesel fuel varied from 10% to 30%. The mass proportion of LSME (or CME) and TME in the mixtures was 1:4. The lowest NOxconcentration in exhaust gases was observed when the mixtures contained 10% of biofuel. For the mixtures containing CME and LSME, NOx concentrations reached 290 and 295 ppm respectively when the engine rotation speed was 1200 min−1 and 370 and 375 ppm respectively when rotation speed was 2000 min−1. CO concentration was the lowest when fuel contained 30% of the FAME mixture. HC concentration was slightly higher when the mixtures containing LSME were used relative to the mixtures containing CME. The amount of HC did not fluctuate considerably (195÷254 ppm) at rotation speeds between 1200 and 2000 min−1. Lower HC concentration was found in exhaust gas when the fuels containing 10% and 20% of biofuel were used. The lowest concentration of polycyclic aromatic hydrocarbons (PAHs) was found when the mixtures contained 30% of biofuel made of LSME or CME corresponding to 30 µg/m3 and 38 µg/m3 at a rotation speed of 1200 min−1 and 640 µg/m3 and 670 µg/m3 at a rotation speed of 2000 min−1 respectively. The greatest amount of smokiness at a high rotation speed of 2000 min−1 was observed when the mixture contained 30% of multi-component biodiesel fuel. It was found that the fuel containing a mixture of 30% of LSME biofuel and 20% of CME biofuel had a small advantage

    Analysis of the ecological parameters of the diesel engine powered with biodiesel fuel containing methyl esters from Camelina sativa Oil

    Get PDF
    The article explores the possibilities of using fatty acid methyl esters derived from the oil of a new species of oily plant Camelina sativa not demanding on soil. The performed research on the physical and chemical properties of pure methyl esters from Camelina sativa show that biofuels do not meet requirements for the biodiesel fuel standard (LST EN 14214:2009) of a high iodine value and high content of linoleic acid methyl ester, so they must be mixed with methyl esters produced from pork lard the content of which in the mixture must be not less than 32%. This article presents the results of tests on combustion emission obtained when three‐cylinder diesel engine VALMET 320 DMG was fuelled with a mixture containing 30% of this new kind of fuel with fossil diesel fuel comparing with emissions obtained when the engine was fuelled with a fuel mixture containing 30% of conventional biodiesel fuel (rapeseed oil methyl esters) with fossil diesel fuel. The obtained results show that using both types of fuel, no significant differences in CO and NOx concentrations were observed throughout the tested load range. When operating on fuels containing methyl esters from Camelina sativa, HC emissions decreased by 10 to 12% and the smokeness of exhaust gas by 12 to 25%. First published online: 27 Oct 201

    The mixture of biobutanol and petrol for Otto engines

    Get PDF
    The expansion of production and the use of biofuels are determined by the legal acts of the European Commission and National legal acts encouraging such production and usage. It would be meaningful to use the mixtures of butanol and petrol in Otto engines. It was determined the possibility of producing biobutanol as a biofuel of the second generation from lignocellulose hydrolyzed to C5/C6 carbohydrates. If the 20–30% potential of lignocellulose biomass in Lithuania is used, it would be possible to produce 200–300 thousand t of biobutanol per year. The amount of carbon monoxide CO decreases by more than 80% when the engine works using the mixtures of petrol and butanol if compared to the CO amount of the engine working with petrol. When the engine works using the mixture of 30% butanol and petrol, the amount of carbon dioxide CO2decreases by 4% on average, and in case it works with the mixture of 50% butanol and petrol ‐ by 14% if compared to the CO2 amount of the engine working using petrol. When the engine works using the mixture of 30% butanol and petrol, the amount of hydrocarbons HC decreases by 26% on average, and if it works with the mixture of 50% butanol and petrol, the amount increases by some 4% if compared to the HC amount of the engine working using petrol. To generalize the results of the performed experiment, it is possible to state that the optimal mixture would consist of 70% petrol and 30% biobutanol. First published online: 27 Oct 201

    Research into operational parameters of diesel engines running on RME biodiesel

    Get PDF
    The results of motor experimental researches on operational parameters of diesel engines F2L511 and A41 are presented in the publication. Change of harmful emission of exhaust gases was determined and evaluated, fuel economy and thrust characteristics of diesel engines running on RME biodiesel compared to diesel fuel. The influence of technical condition of fuel injection aggregates was evaluated for parameters of harmful emission of diesel engines running on biodiesel by simulation of setback of fuel injection in alowable range of technical conditions ‐ the coking of nozzles of fuel injector. The complex improvement of all ecological parameters was evaluated by optimisation of fuel injection phase of diesel engines running on RME biodiesel. Objectives and aspects of further researches on indicator process of diesel engines were determined. First Published Online: 27 Oct 201

    Biofuels: future prospects

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    Biodyzelino gamyba iš rapsų sėklų naudojant bioetanolį

    No full text
    Santr. angl., rusBibliogr.: p. 11-12 ( 14 pavad.)Vytauto Didžiojo universitetasŽemės ūkio akademij

    Green energy from microalgae: usage of algae biomass for anaerobic digestion

    No full text
    1314-7234 (Online)The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared in different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogasVytauto Didžiojo universitetasŽemės ūkio akademij
    corecore