326 research outputs found
Sect and House in Syria: History, Architecture, and Bayt Amongst the Druze in Jaramana
This paper explores the connections between the architecture and materiality of houses and the social idiom of bayt (house, family). The ethnographic exploration is located in the Druze village of Jaramana, on the outskirts of the Syrian capital Damascus. It traces the histories, genealogies, and politics of two families, bayt Abud-Haddad and bayt Ouward, through their houses. By exploring the two families and the architecture of their houses, this paper provides a detailed ethnographic account of historical change in modern Syria, internal diversity, and stratification within the intimate social fabric of the Druze neighbourhood at a time of war, and contributes a relational approach to the anthropological understanding of houses
Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors: A review of the state of the art
In this Perspective we summarize the status of technological development for
large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline
coatings for interferometric gravitational-wave (GW) detectors. These topics
were originally presented in a workshop{\dag} bringing together members of the
GW community from the laser interferometer gravitational-wave observatory
(LIGO), Virgo, and KAGRA collaborations, along with scientists from the
precision optical metrology community, and industry partners with extensive
expertise in the manufacturing of said coatings. AlGaAs-based crystalline
coatings present the possibility of GW observatories having significantly
greater range than current systems employing ion-beam sputtered mirrors. Given
the low thermal noise of AlGaAs at room temperature, GW detectors could realize
these significant sensitivity gains, while potentially avoiding cryogenic
operation. However, the development of large-area AlGaAs coatings presents
unique challenges. Herein, we describe recent research and development efforts
relevant to crystalline coatings, covering characterization efforts on novel
noise processes, as well as optical metrology on large-area (~10 cm diameter)
mirrors. We further explore options to expand the maximum coating diameter to
20 cm and beyond, forging a path to produce low-noise AlGaAs mirrors amenable
to future GW detector upgrades, while noting the unique requirements and
prospective experimental testbeds for these novel materials.Comment: 13pages, 3 figure
An 8-mm diameter fibre robot positioner for massive spectroscopy surveys
This article has been accepted for publication in Monthly Notices of Royal Astronomical Society © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedMassive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07 arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic InstrumentWe acknowledge support from the Spanish MICINNs Consolider-Ingenio 2010 Program me under grant MultiDark CSD2009-00064, HEPHACOS S2009/ESP-1473, and MINECO Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249. We also thank the support from a CSIC-AVS contract through MICINN grant AYA2010-21231-C02- 01, and CDTI grant IDC-20101033; and support from the Spanish MINECO research grants AYA2012-31101 and FPA2012-34694. JPK, PH and LM acknowledge support from the ERC advanced grant LIDA and from an SNF Interdisciplinary grant
An 8-mm diameter fibre robot positioner for massive spectroscopy surveys
Massive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic Instrument.
Coronin-1C Protein and Caveolin Protein Provide Constitutive and Inducible Mechanisms of Rac1 Protein Trafficking
Sustained directional fibroblast migration requires both polarized activation of the protrusive signal, Rac1, and redistribution of inactive Rac1 from the rear of the cell so that it can be redistributed or degraded. In this work, we determine how alternative endocytic mechanisms dictate the fate of Rac1 in response to the extracellular matrix environment. We discover that both coronin-1C and caveolin retrieve Rac1 from similar locations at the rear and sides of the cell. We find that coronin-1C-mediated extraction, which is responsible for Rac1 recycling, is a constitutive process that maintains Rac1 protein levels within the cell. In the absence of coronin-1C, the effect of caveolin-mediated endocytosis, which targets Rac1 for proteasomal degradation, becomes apparent. Unlike constitutive coronin-1C-mediated trafficking, caveolin-mediated Rac1 endocytosis is induced by engagement of the fibronectin receptor syndecan-4. Such an inducible endocytic/degradation mechanism would predict that, in the presence of fibronectin, caveolin defines regions of the cell that are resistant to Rac1 activation but, in the absence of fibronectin leaves more of the membrane susceptible to Rac1 activation and protrusion. Indeed, we demonstrate that fibronectin-stimulated activation of Rac1 is accelerated in the absence of caveolin and that, when caveolin is knocked down, polarization of active Rac1 is lost in FRET experiments and culminates in shunting migration in a fibrous fibronectin matrix. Although the concept of polarized Rac1 activity in response to chemoattractants has always been apparent, our understanding of the balance between recycling and degradation explains how polarity can be maintained when the chemotactic gradient has faded
Piezo-deformable mirrors for active mode matching in advanced LIGO
The detectors of the laser interferometer gravitational-wave observatory (LIGO) are broadly limited by the quantum noise and rely on the injection of squeezed states of light to achieve their full sensitivity. Squeezing improvement is limited by mode mismatch between the elements of the squeezer and the interferometer. In the current LIGO detectors, there is no way to actively mitigate this mode mismatch. This paper presents a new deformable mirror for wavefront control that meets the active mode matching requirements of advanced LIGO. The active element is a piezo-electric transducer, which actuates on the radius of curvature of a 5 mm thick mirror via an axisymmetric flexure. The operating range of the deformable mirror is 120±8 mD in vacuum and an additional 200 mD adjustment range accessible out of vacuum. Combining the operating range and the adjustable static offset, it is possible to deform a flat mirror from −65 mD to −385 mD. The measured bandwidth of the actuator and driver electronics is 6.8 Hz. The scattering into higher-order modes is measured to be <0.2% over the nominal beam radius. These piezo-deformable mirrors meet the stringent noise and vacuum requirements of advanced LIGO and will be used for the next observing run (O4) to control the mode-matching between the squeezer and the interferometer.Varun Srivastava, Georgia Mansell, Camille Makarem, Minkyun Noh, Richard Abbott, Stefan Ballmer, GariLynn Billingsley, Aidan Brooks, Huy Tuong Cao, Peter Fritschel, Don Griffith, Wenxuan Jia, Marie Kasprzack, Myron MacInnis, Sebastian Ng, Luis Sanchez, Calum Torrie, Peter Veitch, and Fabrice Matichar
An Examination of Not-For-Profit Stakeholder Networks for Relationship Management: A Small-Scale Analysis on Social Media
Using a small-scale descriptive network analysis approach, this study highlights the importance of stakeholder networks for identifying valuable stakeholders and the management of existing stakeholders in the context of mental health not-for-profit services. We extract network data from the social media brand pages of three health service organizations from the U.S., U.K., and Australia, to visually map networks of 579 social media brand pages (represented by nodes), connected by 5,600 edges. This network data is analyzed using a collection of popular graph analysis techniques to assess the differences in the way each of the service organizations manage stakeholder networks. We also compare node meta-information against basic topology measures to emphasize the importance of effectively managing relationships with stakeholders who have large external audiences. Implications and future research directions are also discussed
Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade
- …