86 research outputs found

    Flow Cytofluorimetric Analysis of Anti-LRP4 (LDL Receptor-Related Protein 4) Autoantibodies in Italian Patients with Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease in which 90% of patients have autoantibodies against the muscle nicotinic acetylcholine receptor (AChR), while autoantibodies to muscle-specific tyrosine kinase (MuSK) have been detected in half (5%) of the remaining 10%. Recently, the low-density lipoprotein receptor-related protein 4 (LRP4), identified as the agrin receptor, has been recognized as a third autoimmune target in a significant portion of the double sero-negative (dSN) myasthenic individuals, with variable frequency depending on different methods and origin countries of the tested population. There is also convincing experimental evidence that anti-LRP4 autoantibodies may cause MG

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53

    Get PDF
    Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases

    Get PDF

    Novel path to IL-6 trans-signaling through thrombin-induced soluble IL-6 receptor release by platelets

    No full text
    Interleukin (IL)-6 is a multifunctional cytokine with a critical role in inflammatory, immunoregulatory and haemopoietic responses. Its receptor consists of an ubiquitously expressed membrane transducing element (gp130) and of the specific element IL-6R-alpha (gp80), present only on hepatocytes and some leukocyte subsets. IL-6R-alpha also exists as soluble protein (sIL-6R) that, in the presence of IL-6, forms a complex able to bind gp130 and, thanks to the mechanism called trans-signaling, transduces IL-6 effect through tyrosine phosphorylation and activation of the signal transducer and transcription activator (STAT)-3. The aim of this study was to analyze the bidirectional relationships between platelet aggregation and IL-6-dependent effects. While platelets do not produce IL-6, we found that resting platelets express gp130, but not gp80, on their membranes. Upon activation by thrombin or calcium ionophore A23187, but not by ADP, the IL-6R-alpha is released in soluble form, while cangrelor, the specific inhibitor of P2Y12 receptor, can partially inhibit sIL-6R release. This sIL-6R is biologically active and, in the presence of IL-6, can trigger IL-6 trans-signaling, inducing an autocrine activation loop (as measured by an increase in gp80 and gp130 content) and STAT3 phosphorylation. On the other hand, IL-6 trans-signaling has no effect on platelet degranulation or aggregation by itself, nor on thrombin-induced platelet aggregation. Our data add an important piece to the puzzle of thrombosis and inflammation: in the presence of IL-6, which can be produced by stressed endothelial cells, the platelet-derived IL-6 trans-signaling could be crucial for the evolution of inflammation within a damaged vessel

    Defective expression of scavenger receptors in celiac disease mucosa.

    No full text
    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder
    corecore