2,891 research outputs found

    Observation of particle hole asymmetry and phonon excitations in non-Fermi liquid systems: A high-resolution photoemission study of ruthenates

    Get PDF
    We investigate the temperature evolution of the electronic states in the vicinity of the Fermi level of a non-Fermi liquid (NFL) system, CaRuO3 using ultra high-resolution photoemission spectroscopy; isostructural SrRuO3 exhibiting Fermi liquid behavior despite similar electron interaction parameters as that of CaRuO3, is used as a reference. High-energy resolution in this study helps to reveal particle-hole asymmetry in the excitation spectra of CaRuO3 in contrast to that in SrRuO3. In addition, we observe signature of phonon excitations in the photoemission spectra of CaRuO3 at finite temperatures while these are weak in SrRuO3.Comment: 4 pages including 3 figure

    Gap nodes induced by coexistence with antiferromagnetism in iron-based superconductors

    Full text link
    We investigate the pairing in iron pnictides in the coexistence phase, which displays both superconducting and antiferromagnetic orders. By solving the pairing problem on the Fermi surface reconstructed by long-range magnetic order, we find that the pairing interaction necessarily becomes angle-dependent, even if it was isotropic in the paramagnetic phase, which results in an angular variation of the superconducting gap along the Fermi surfaces. We find that the gap has no nodes for a small antiferromagnetic order parameter M, but may develop accidental nodes for intermediate values of M, when one pair of the reconstructed Fermi surface pockets disappear. For even larger M, when the other pair of reconstructed Fermi pockets is gapped by long-range magnetic order, superconductivity still exists, but the quasiparticle spectrum becomes nodeless again. We also show that the application of an external magnetic field facilitates the formation of nodes. We argue that this mechanism for a nodeless-nodal-nodeless transition explains recent thermal conductivity measurements of hole-doped Ba_{1-x}K_xFe_2As_2. [J-Ph. Read et.al. arXiv:1105.2232].Comment: 13 pages, 10 figures, submitted to PR

    Spherical collapse with heat flow and without horizon

    Get PDF
    We present a class of solutions for a heat conducting fluid sphere, which radiates energy during collapse without the appearance of horizon at the boundary at any stage of the collapse. A simple model shows that there is no accumulation of energy due to collapse since it radiates out at the same rate as it is being generated.Comment: RevTeX, 3 page

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Magnetic Response in a Zigzag Carbon Nanotube

    Full text link
    Magnetic response of interacting electrons in a zigzag carbon nanotube threaded by a magnetic flux is investigated within a Hartree-Fock mean field approach. Following the description of energy spectra for both non-interacting and interacting cases we analyze the behavior of persistent current in individual branches of a nanotube. Our present investigation leads to a possibility of getting a filling-dependent metal-insulator transition in a zigzag carbon nanotube.Comment: 9 pages, 14 figure

    Origin of charge density wave formation in insulators from a high resolution photoemission study of BaIrO3

    Get PDF
    We investigate the origin of charge density wave (CDW) formation in insulators by studying BaIrO3 using high resolution (1.4 meV) photoemission spectroscopy. The spectra reveal the existence of localized density of states at the Fermi level in the vicinity of room temperature. These localized states are found to vanish as the temperature is lowered thereby, opening a soft gap at the Fermi level, as a consequence of CDW transition. In addition, the energy dependence of the spectral density of states reveals the importance of magnetic interactions, rather than well-known Coulomb repulsion effect, in determining the electronic structure thereby implying a close relationship between ferromagnetism and CDW observed in this compound. Also, Ba core level spectra surprisingly exhibit an unusual behavior prior to CDW transition.Comment: 4 pages, 4 figures. To appear in Physical Review Letter

    Observation of pseudogap in MgB2

    Full text link
    Pseudogap phase in superconductors continues to be an outstanding puzzle that differentiates unconventional superconductors from the conventional ones (BCS-superconductors). Employing high resolution photoemission spectroscopy on a highly dense conventional superconductor, MgB2, we discover an interesting scenario. While the spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected, the spectra in the wider energy range reveal emergence of a pseudogap much above the superconducting transition temperature indicating apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap.Comment: 4 figure

    Importance of conduction electron correlation in a Kondo lattice, Ce2CoSi3

    Full text link
    Kondo systems are usually described by the interaction of strong correlation induced local moment with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce2_2CoSi3_3, using high resolution photoemission spectroscopy and {\it ab initio} band structure calculations, where Co 3dd electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal signature of Ce 4ff states derived Kondo resonance feature at the Fermi level and dominance of Co 3dd contributions at higher binding energies in the conduction band. The line shape of the experimental Co 3dd band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, UU among Co 3dd electrons within the LDA+UU method leads to a better representation of experimental results. Signature of electron correlation induced satellite feature is also observed in the Co 2pp core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.Comment: 6 figure
    corecore