28 research outputs found
The involvement of Aβ42 and tau in nucleolar and protein synthesis machinery dysfunction
Alzheimer’s disease (AD) is the most common form of dementia and is distinguished from other dementias by observation of extracellular Amyloid-b (Ab) plaques and intracellular neurofibrillary tangles, comprised of fibrils of Ab and tau protein, respectively. At early stages, AD is characterized by minimal neurodegeneration, oxidative stress, nucleolar stress, and altered protein synthesis machinery. It is generally believed that Ab oligomers are the neurotoxic species and their levels in the AD brain correlate with the severity of dementia suggesting that they play a critical role in the pathogenesis of the disease. Here, we show that the incubation of differentiated human neuroblastoma cells (SHSY5Y) with freshly prepared Ab42 oligomers initially resulted in oxidative stress and subtle nucleolar stress in the absence of DNA damage or cell death. The presence of exogenous Ab oligomers resulted in altered nuclear tau levels as well as phosphorylation state, leading to altered distribution of nucleolar tau associated with nucleolar stress. These markers of cellular dysfunction worsen over time alongside a reduction in ribosomal RNA synthesis and processing, a decrease in global level of newly synthesized RNA and reduced protein synthesis. The interplay between Ab and tau in AD remains intriguing and Ab toxicity has been linked to tau phosphorylation and changes in localization. These findings provide evidence for the involvement of Ab42 effects on nucleolar tau and protein synthesis machinery dysfunction in cultured cells. Protein synthesis dysfunction is observed in mild cognitive impairment and early AD in the absence of significant neuronal death
Recommended from our members
Nucleation-dependent aggregation kinetics of yeast Sup35 fragment GNNQQNY
An N-terminal hepta-peptide sequence of yeast prion protein Sup35 with the sequence GNNQQNY is widely used as a model system for amyloid fibril formation. In this study, we used a reproducible solubilisation protocol that allows the generation of a homogenous monomeric solution of GNNQQNY to uncover the molecular details of its self-assembly mechanism. The aggregation kinetics data show that the GNNQQNY sequence follows nucleation-dependent aggregation kinetics with a critical nucleus of size ~7 monomers and that the efficiency of nucleation were found to be inversely related to the reaction temperature. The nucleus reduces the thermodynamic energy barrier by acting as a template for further self-assembly and results in highly ordered amyloid fibrils. The fibers grown at different temperatures showed similar Thioflavin T fluorescence, Congo-red binding and β-sheet rich structures displaying a characteristic cross-β diffraction pattern. These aggregates also share morphological and structural identity with those reported earlier. The mature GNNQQNY fibers did not exert significant oxidative stress or cytotoxicity upon incubating with differentiated SHSY5Y cells. To our knowledge, this is the first study to experimentally validate previous nucleus size predictions based on theoretical and molecular dynamics simulations. These findings provide the basis for understanding the kinetics and thermodynamics of amyloid nucleation and elongation of amyloidogenic proteins/peptides associated with many systemic and neurodegenerative diseases
Oxidative Stress Conditions Result in Trapping of PHF-Core Tau (297–391) Intermediates
Funding: This work was supported by funding from Alzheimer’s Society [345 (AS-PG-16b-010)] awarded to L.C.S. and funding M.B.M. Y.K.A.-H. is supported by WisTa Laboratories Ltd. (PAR1596). The work was supported by ARUK South Coast Network. G.B. was supported by European Molecular Biology Organisation (EMBO) Short-Term Fellowship award (EMBO-STF 7674). LCS is supported by BBSRC [BB/S003657/1]. Acknowledgments: TEM work was performed at the University of Sussex’s Electron microscopy imaging centre (EMC), funded by the School of Life Sciences, the Wellcome Trust (095605/Z/11/A, 208348/Z/17/Z) and the RM Phillips Trust. The authors thank Pascale Schellenberger for valuable support.Peer reviewedPublisher PD
Bypassing shortages of personal protective equipment in low-income settings using local production and open source tools
Free and open-source hardware, 3D printing, and the use of locally sourced materials can be valuable tools for local problem solving, as proven by the production of more than 400 reusable face shields and masks in a Nigerian community to bypass PPE shortages during the COVID-19 pandemic
Dityrosine cross-links are present in alzheimer's disease-derived Tau Oligomers and Paired Helical Filaments (PHF) which Promotes the stability of the PHF-core Tau (297–391) in vitro
A characteristic hallmark of Alzheimer's Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aβ plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 – 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297–391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo
CP Studies and Non-Standard Higgs Physics
There are many possibilities for new physics beyond the Standard Model that
feature non-standard Higgs sectors. These may introduce new sources of CP
violation, and there may be mixing between multiple Higgs bosons or other new
scalar bosons. Alternatively, the Higgs may be a composite state, or there may
even be no Higgs at all. These non-standard Higgs scenarios have important
implications for collider physics as well as for cosmology, and understanding
their phenomenology is essential for a full comprehension of electroweak
symmetry breaking. This report discusses the most relevant theories which go
beyond the Standard Model and its minimal, CP-conserving supersymmetric
extension: two-Higgs-doublet models and minimal supersymmetric models with CP
violation, supersymmetric models with an extra singlet, models with extra gauge
groups or Higgs triplets, Little Higgs models, models in extra dimensions, and
models with technicolour or other new strong dynamics. For each of these
scenarios, this report presents an introduction to the phenomenology, followed
by contributions on more detailed theoretical aspects and studies of possible
experimental signatures at the LHC and other colliders.Comment: Report of the CPNSH workshop, May 2004 - Dec 2005, 542 pages. The
complete report as well as its individual chapters are also available from
http://kraml.home.cern.ch/kraml/cpnsh/report.htm
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
Table_1_The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction.doc
<p>Alzheimer’s disease (AD) is the most common form of dementia and is distinguished from other dementias by observation of extracellular Amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, comprised of fibrils of Aβ and tau protein, respectively. At early stages, AD is characterized by minimal neurodegeneration, oxidative stress, nucleolar stress, and altered protein synthesis machinery. It is generally believed that Aβ oligomers are the neurotoxic species and their levels in the AD brain correlate with the severity of dementia suggesting that they play a critical role in the pathogenesis of the disease. Here, we show that the incubation of differentiated human neuroblastoma cells (SHSY5Y) with freshly prepared Aβ42 oligomers initially resulted in oxidative stress and subtle nucleolar stress in the absence of DNA damage or cell death. The presence of exogenous Aβ oligomers resulted in altered nuclear tau levels as well as phosphorylation state, leading to altered distribution of nucleolar tau associated with nucleolar stress. These markers of cellular dysfunction worsen over time alongside a reduction in ribosomal RNA synthesis and processing, a decrease in global level of newly synthesized RNA and reduced protein synthesis. The interplay between Aβ and tau in AD remains intriguing and Aβ toxicity has been linked to tau phosphorylation and changes in localization. These findings provide evidence for the involvement of Aβ42 effects on nucleolar tau and protein synthesis machinery dysfunction in cultured cells. Protein synthesis dysfunction is observed in mild cognitive impairment and early AD in the absence of significant neuronal death.</p
Image_1_The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction.PDF
<p>Alzheimer’s disease (AD) is the most common form of dementia and is distinguished from other dementias by observation of extracellular Amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles, comprised of fibrils of Aβ and tau protein, respectively. At early stages, AD is characterized by minimal neurodegeneration, oxidative stress, nucleolar stress, and altered protein synthesis machinery. It is generally believed that Aβ oligomers are the neurotoxic species and their levels in the AD brain correlate with the severity of dementia suggesting that they play a critical role in the pathogenesis of the disease. Here, we show that the incubation of differentiated human neuroblastoma cells (SHSY5Y) with freshly prepared Aβ42 oligomers initially resulted in oxidative stress and subtle nucleolar stress in the absence of DNA damage or cell death. The presence of exogenous Aβ oligomers resulted in altered nuclear tau levels as well as phosphorylation state, leading to altered distribution of nucleolar tau associated with nucleolar stress. These markers of cellular dysfunction worsen over time alongside a reduction in ribosomal RNA synthesis and processing, a decrease in global level of newly synthesized RNA and reduced protein synthesis. The interplay between Aβ and tau in AD remains intriguing and Aβ toxicity has been linked to tau phosphorylation and changes in localization. These findings provide evidence for the involvement of Aβ42 effects on nucleolar tau and protein synthesis machinery dysfunction in cultured cells. Protein synthesis dysfunction is observed in mild cognitive impairment and early AD in the absence of significant neuronal death.</p