79 research outputs found

    On algebraic structures in supersymmetric principal chiral model

    Full text link
    Using the Poisson current algebra of the supersymmetric principal chiral model, we develop the algebraic canonical structure of the model by evaluating the fundamental Poisson bracket of the Lax matrices that fits into the rs matrix formalism of non-ultralocal integrable models. The fundamental Poisson bracket has been used to compute the Poisson bracket algebra of the monodromy matrix that gives the conserved quantities in involution

    Irreducibility of fusion modules over twisted Yangians at generic point

    Full text link
    With any skew Young diagram one can associate a one parameter family of "elementary" modules over the Yangian \Yg(\g\l_N). Consider the twisted Yangian \Yg(\g_N)\subset \Yg(\g\l_N) associated with a classical matrix Lie algebra \g_N\subset\g\l_N. Regard the tensor product of elementary Yangian modules as a module over \Yg(\g_N) by restriction. We prove its irreducibility for generic values of the parameters.Comment: Replaced with journal version, 18 page

    Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain

    Full text link
    Determinant representations of form factors are used to represent the spontaneous magnetization of the Heisenberg XXZ chain (Delta >1) on the finite lattice as the ratio of two determinants. In the thermodynamic limit (the lattice of infinite length), the Baxter formula is reproduced in the framework of Algebraic Bethe Ansatz. It is shown that the finite size corrections to the Baxter formula are exponentially small.Comment: 18 pages, Latex2

    Spin-spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field

    Full text link
    Using algebraic Bethe ansatz and the solution of the quantum inverse scattering problem, we compute compact representations of the spin-spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field. At lattice distance m, they are typically given as the sum of m terms. Each term n of this sum, n = 1,...,m is represented in the thermodynamic limit as a multiple integral of order 2n+1; the integrand depends on the distance as the power m of some simple function. The root of these results is the derivation of a compact formula for the multiple action on a general quantum state of the chain of transfer matrix operators for arbitrary values of their spectral parameters.Comment: 34 page

    On the quantum inverse scattering problem

    Full text link
    A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0) = P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl(n) XXZ model, the XYZ spin-1/2 chain and also to the spin-s Heisenberg chains.Comment: Latex, 20 page

    The classical R-matrix of AdS/CFT and its Lie dialgebra structure

    Full text link
    The classical integrable structure of Z_4-graded supercoset sigma-models, arising in the AdS/CFT correspondence, is formulated within the R-matrix approach. The central object in this construction is the standard R-matrix of the Z_4-twisted loop algebra. However, in order to correctly describe the Lax matrix within this formalism, the standard inner product on this twisted loop algebra requires a further twist induced by the Zhukovsky map, which also plays a key role in the AdS/CFT correspondence. The non-ultralocality of the sigma-model can be understood as stemming from this latter twist since it leads to a non skew-symmetric R-matrix.Comment: 22 pages, 2 figure

    Drinfeld Twists and Algebraic Bethe Ansatz of the Supersymmetric t-J Model

    Full text link
    We construct the Drinfeld twists (factorizing FF-matrices) for the supersymmetric t-J model. Working in the basis provided by the FF-matrix (i.e. the so-called FF-basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(21)gl(2|1) invariant t-J model.Comment: 23 pages, no figure, Latex file, minor misprints are correcte

    Dynamical correlation functions of the XXZ spin-1/2 chain

    Full text link
    We derive a master equation for the dynamical spin-spin correlation functions of the XXZ spin-1/2 Heisenberg finite chain in an external magnetic field. In the thermodynamic limit, we obtain their multiple integral representation.Comment: 25 page
    corecore