19,858 research outputs found
Noise-Activated Escape from a Sloshing Potential Well
We treat the noise-activated escape from a one-dimensional potential well of
an overdamped particle, to which a periodic force of fixed frequency is
applied. We determine the boundary layer behavior, and the physically relevant
length scales, near the oscillating well top. We show how stochastic behavior
near the well top generalizes the behavior first determined by Kramers, in the
case without forcing. Both the case when the forcing dies away in the weak
noise limit, and the case when it does not, are examined. We also discuss the
relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio
Anisotropy of nickel-base superalloy single crystals
The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime
Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia
A commercially available bulk 4.5 mole percent yttria-(Y2O3) partially stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging curves were constructed for both the as received and the solution annealed and quenched materials; the curves showed hardness peaks at 1397 and 1517 Kg/sq mm respectively. The rectangular plate shaped tetragonal precipitates were found to have a 110 habit plane. A total of twelve different types of tetragonal precipitates were found. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinc phase, thus indicating that transformation toughening is not a significant mechanism for the material
Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses
Exit times for stochastic Ginzburg-Landau classical field theories with two
or more coupled classical fields depend on the interval length on which the
fields are defined, the potential in which the fields deterministically evolve,
and the relative stiffness of the fields themselves. The latter is of
particular importance in that physical applications will generally require
different relative stiffnesses, but the effect of varying field stiffnesses has
not heretofore been studied. In this paper, we explore the complete phase
diagram of escape times as they depend on the various problem parameters. In
addition to finding a transition in escape rates as the relative stiffness
varies, we also observe a critical slowing down of the string method algorithm
as criticality is approached.Comment: 16 pages, 10 figure
The Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance
We study the trajectories followed by a particle subjected to weak noise when
escaping from the domain of attraction of a stable fixed point. If detailed
balance is absent, a _focus_ may occur along the most probable exit path,
leading to a breakdown of symmetry (if present). The exit trajectory
bifurcates, and the exit location distribution may become `skewed'
(non-Gaussian). The weak-noise asymptotics of the mean escape time are strongly
affected. Our methods extend to the study of skewed exit location distributions
in stochastic models without symmetry.Comment: REVTEX macros (latest version). Two accompanying PS figures, one of
which is large (over 600K unpacked
Phase behavior of the Confined Lebwohl-Lasher Model
The phase behavior of confined nematogens is studied using the Lebwohl-Lasher
model. For three dimensional systems the model is known to exhibit a
discontinuous nematic-isotropic phase transition, whereas the corresponding two
dimensional systems apparently show a continuous
Berezinskii-Kosterlitz-Thouless like transition. In this paper we study the
phase transitions of the Lebwohl-Lasher model when confined between planar
slits of different widths in order to establish the behavior of intermediate
situations between the pure planar model and the three-dimensional system, and
compare with previous estimates for the critical thickness, i.e. the slit width
at which the transition switches from continuous to discontinuous.Comment: Submitted to Physical Review
Field enhancement in subnanometer metallic gaps
Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732
(2010)], we present here a theoretical analysis of the optical response of
sharp gold electrodes separated by a subnanometer gap. In particular, we have
used classical finite difference time domain simulations to investigate the
electric field distribution in these nanojunctions upon illumination. Our
results show a strong confinement of the field within the gap region, resulting
in a large enhancement compared to the incident field. Enhancement factors
exceeding 1000 are found for interelectrode distances on the order of a few
angstroms, which are fully compatible with the experimental findings. Such huge
enhancements originate from the coupling of the incident light to the
evanescent field of hybrid plasmons involving charge density oscillations in
both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review
Experimental Test of Momentum Cooling Model Predictions at COSY and Conclusions for WASA and HESR
The High-Energy Storage Ring (HESR) of the future International Facility for
Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an
anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An
important and challenging feature of the new facility is the combination of
highly dense phase space cooled beams with internal targets. A detailed
numerical and analytical approach to the Fokker-Planck equation for
longitudinal filter cooling including the beam - target interaction has been
carried out to demonstrate the stochastic cooling capability. To gain
confidence in the model predictions a series of experimental stochastic cooling
studies with the internal target ANKE at COSY have been carried out. A
remarkable agreement between model and experiment was achieved. On this basis
longitudinal stochastic cooling simulations were performed to predict the
possibilities and limits of cooling when the newly installed WASA Pellet-target
is operated.Comment: 17 pages, 11 figures, Talk given at Symposium on Meson Physics at
COSY-11 and WASA-at-COSY, Cracow, Poland, 17-22 Jun 200
High performance microprocessor system for eddy current defectoscope measurement signal processing
This article shows principles of development of the eddy current defectoscope data acquisition system. It describes goals of development of this system and main requirements for its characteristics. Also on basis of these requirements possible implementation of the device was suggested
- …