17 research outputs found

    NEUROPROTECTIVE EFFECTS OF AQUEOUS EXTRACT OF HYDROCOTYLE JAVANICA IN AMELIORATING NEUROBEHAVIORAL ALTERATION INDUCED BY MERCURY

    Get PDF
    Objective: This study aims to assess the effects of the aqueous extract of Hydrocotyle javanica (HJ) in ameliorating mercury-induced neurobehavioral toxicity.Methods: For the study, 36 adult male Swiss albino mice of 25–30 g in weight were taken. They were equally divided into six groups. Group I was treated with distilled water, Group II was treated with mercuric chloride (1.5 mg/kg), Group III was treated with HJ extract low dose (100 mg/kg), Group IV was treated with HJ extract high dose (200 mg/kg), Group V was treated with mercuric chloride plus HJ extract low dose, and Group VI was treated with mercuric chloride plus TB extract high dose. In all the groups, the doses were administered orally through oral gavage tube and the treatment lasted for 14 days. The behavioral effects evaluated were locomotor activity in the open field test, immobility in forced swimming test and anxiety in elevated plus maze test, spatial learning ability, and memory in the Morris water maze test.Results: The present study showed that mercury exposure significantly decreased the locomotor activity (p<0.001), number of annulus crossovers (p<0.001), number of open arm entries (p<0.01), time spent in open arms (p<0.001), and increased escape latency (p<0.01), path length (p<0.001), and immobility (p<0.001) in mice. The aqueous extract of HJ significantly alleviated the neurotoxic effects of mercury. The aqueous extract of HJ showed to increase the locomotor activity (p<0.01), number of annulus crossovers (p<0.001), number of open arm entries (p<0.05), and time spent in open arms (p<0.05), which was decreased in mercury-exposed mice. The HJ extract also showed to decrease the immobility (p<0.001), escape latency (p<0.05), and path length (p<0.001) in mercury-exposed mice.Conclusion: The result of the study shows that neurobehavioral changes induced by mercuric chloride were significantly reversed by the aqueous extract of HJ. Thus, base on the present study, it is concluded that HJ is effective in ameliorating the neurobehavioral deficits induced by mercury

    MERCURY-INDUCED NEUROBEHAVIORAL DEFICIT AND ITS AMELIORATING EFFECTS OF AQUEOUS EXTRACT OF TRAPA BISPINOSA

    Get PDF
    Objective: The aim of this study was to evaluate the effects of aqueous extract of dry fruits of Trapa bispinosa (TB) in alleviating mercury (Hg)-induced neurobehavioral toxicity.Methods: A total of 36 adult male Swiss albino mice weighing 25–30 g were equally divided into six groups, namely I–VI. Group I received distilled water, Group II received mercuric chloride (1.5 mg/kg), Group III received TB extract low dose (150 mg/kg), Group IV received TB extract high dose (300 mg/kg), Group V received mercuric chloride plus TB extract low dose, and Group VI received mercuric chloride plus TB extract high dose. All the groups received doses orally through oral gavage tube and the treatment lasted for 14 days. The behavioral effects were evaluated with locomotor activity in the open field test (OFT), spatial learning ability and memory in the Morris water maze test (MWM), immobility in Forced swimming test (FST) and anxiety in Elevated plus maze test (EPM).Result: In the present study, it was observed that Hg-exposed mice significantly decreased the locomotor activity (p<0.001), time spent in open arms (p<0.001), number of open arm entries (p<0.01), number of annulus crossovers (p<0.001) and increased immobility (p<0.001), escape latency (p<0.01), and path length (p<0.001) in mice. The aqueous extract of TB significantly reduced the neurotoxic effects of Hg. The aqueous extract of TB showed to increase the locomotor activity (p<0.01), time spent in open arms (p<0.01), number of open arm entries (p<0.05), and number of annulus crossovers (p<0.001), which was decreased in Hg-exposed mice. TB extract also showed to decrease the immobility (p<0.001), escape latency (p<0.05), and path length (p<0.001) in Hg-fed mice.Conclusion: On the basis of the results obtained from the behavioral study, the present study indicates that mercuric chloride caused neurobehavioral changes which were significantly reversed by the aqueous extract of TB. Thus, TB was found to be effective in ameliorating the neurobehavioral deficit induced by Hg exposure

    Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of <it>Tinospora cordifolia </it>extract that are exerted on circulating macrophages isolated from CCl<sub>4 </sub>(0.5 ml/kg body weight) intoxicated male albino mice.</p> <p>Methods</p> <p>Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. <it>T. cordifolia </it>extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay.</p> <p>Results</p> <p>The number of morphologically altered macrophages was increased in mice exposed to CCl<sub>4</sub>. Administration of CCl<sub>4 </sub>(i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl<sub>4 </sub>intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl<sub>4. </sub>However oral administration of aqueous fraction of <it>Tinospora cordifolia </it>stem parts at a dose of 40 mg/kg body weight (<it>in vivo</it>) in CCl<sub>4 </sub>exposed mice ameliorated the effect of CCl<sub>4</sub>, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl<sub>4 </sub>intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of <it>Tinospora cordifolia </it>at a dose of 150 mg/kg body weight.</p> <p>Conclusion</p> <p>From our findings it can be suggested that, polar fractions of <it>Tinospora cordifolia </it>stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of <it>Tinospora cordifolia </it>on immune functions needs to be elucidated.</p

    PROMISING NEUROPROTECTIVE PLANTS FROM NORTH-EAST INDIA

    Get PDF
    Neuroprotection is a broad term commonly used to refer therapeutic strategies that can prevent, delay or even reverse neuronal damage. Herbal medicines are widely used across the globe as economical, effective and safer alternative remedies. North-East (NE) India harbours a large number of medicinal plants, it falls under Indo-Burma global hotspot one of the 34 global biodiversity hotspots. In traditional practice of medicines, people here uses a variety of medicinal plants for the treatment of various ailments. The purpose of this manuscript is to review the plants with neuroprotective potential from NE India and to provide the reference for future study of new and alternative remedies for the treatment of neurological ailments. Â

    Rural-Urban Divide of COVID-19 fatalities in India – Investigating the Role of Lifestyle Disorder Diseases

    No full text
    Using data on weekly COVID-19 infections and fatalities at the district level for 19 states and 4 union territories of India, we investigate the determinants of COVID-19 deaths focusing exclusively on the second wave of infections. We include several macroeconomic and structural indicators for districts namely, per capita district domestic product, the degree of urbanization, population density, percentage of aged population, share of agriculture, poverty, amongst several others. Our findings suggest that fatalities have a clear rural-urban divide. Rural agricultural districts with more poor people have experienced less cases and fatalities. Fatalities are more clustered in prosperous and dense industrial districts. Regions having higher COVID-19 fatalities also have a higher proportion of ageing population with urban life-style disorder related diseases such as obesity, diabetes and hypertension. Prevalence of respiratory illnesses further aggravate the effects of some of these life-style disorder diseases on Covid fatalities

    Gold Nanostars in Plasmonic Photothermal Therapy: The Role of Tip Heads in the Thermoplasmonic Landscape

    No full text
    Throughout the history of science, comparison among calculated parameters and experimental observables has been considered as obvious to accomplish and reciprocate a fundamental hypothesis. The exploitation of sharp edges toward a plethora of paraphernalia has been continued from the prehistoric evidence to modern nanotechnology. To validate the hypotheses of the sharp edges, gold nanostars that exhibit their localized surface plasmon resonances in the visible–near-infrared region and contain multiple sharp tips have been considered as the model structures. Efficient control on the length and sharpness of the spikes has been achieved by judicious manipulation of the respective synthetic protocol. The electromagnetic simulation considering the topological parameters demonstrates an exotic interplay between the depolarization factor (<i>P</i><sub><i>z</i></sub>) and aspect ratio (α) to express the strength of the electric field generated at the tip heads as a function of their sharpness. Subsequent profiling of photothermal response caused by resistive heat exhibits an outstanding proof-of-concept resemblance between the local thermal manipulation and replicated in vitro laboratory experiment. Thus, the present work investigates an interdisciplinary analytical landscape enumerating the role of sharpness on the enhanced field and the temperature distribution localized at the tip head in the realm of plasmonic photothermal therapy

    Gossypetin ameliorates ionizing radiation-induced oxidative stress in mice liver—a molecular approach

    No full text
    <div><p></p><p>Radioprotective action of gossypetin (GTIN) against gamma (γ)-radiation-induced oxidative stress in liver was explored in the present article. Our main aim was to evaluate the protective efficacy of GTIN against radiation-induced alteration of liver in murine system. To evaluate the effect of GTIN, it was orally administered to mice at a dose of 30 mg/kg body weight for three consecutive days prior to γ-radiation at a dose of 5 Gy. Radioprotective efficacy of GTIN were evaluated at physiological, cellular, and molecular level using biochemical analysis, comet assay, flow cytometry, histopathology, immunofluorescence, and immunoblotting techniques. Ionizing radiation was responsible for augmentation of hepatic oxidative stress in terms of lipid peroxidation and depletion of endogenous antioxidant enzymes. Immunoblotting and immunofluorescence studies showed that irradiation enhanced the nuclear translocation of nuclear factor kappa B (NF-κB) level, which leads to hepatic inflammation. To investigate further, we found that radiation induced the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK)-mediated apoptotic pathway and deactivation of the NF-E2-related factor 2 (Nrf2)-mediated redox signaling pathway, whereas GTIN pretreatment ameliorated these radiation-mediated effects. This is the novel report where GTIN rationally validated the molecular mechanism in terms of the modulation of cellular signaling system’ instead of ‘ This is the novel report where GTIN is rationally validated in molecular terms to establish it as promising radioprotective agents. This might be fruitful especially for nuclear workers and defense personnel assuming the possibility of radiation exposure.</p></div
    corecore