9 research outputs found

    Correlation of Heterozygote risk, Pathological risk and lifetime risk with Clinicopathologic Features in Iranian breast cancer patients

    Get PDF
    Breast cancer is a prevalent malignancy among women worldwide and a principle reason of death in Iranian women. In current study, 64 Iranian women diagnosed with breast cancer and classified into four age groups (65 years) were analyzed for correlation between heterozygote risk and lifetime risk with clinicopathological features. Nine patients were also investigated for BRCA1 germline mutations. Our results indicated that people with hetrozygosity risk over 30% more likely to infect invasive ductal carcinoma and utilization of Cyrillic software for Iranian family would open new sights towards the prediction, prognosis and mutation detection

    Genetic and Epigenetic landscape of Germline Stem Cells

    No full text
    Elucidating the critical epigenetics events involved in differentiation and reprogramming of cells to primordial germ cells (PGCs) is among the interesting issues in stem cell research. Here, I will talk about critical transcription factors and global hypomethylation in development of germ cells. Evidence strongly suggests that the earliest PGCs emerging in the E7.25 mouse embryo epiblast have a highly methylated genome, and high level of H3K9me2 in chromatin but during development, genome demethylated and patterns of histone codes changes dramatically. We designed a polycistroniclentiviral vector and overexpressed Stella, Oct4 and Nanos2 simultaneously in transduced cells; Increasing level of Prdm14, Nanog and decreasing of G9a expression is an interesting finding which might be considered as a primary step of reprogramming toward germline progenitor cells, here we propose decreasing H3K9me2 level as a consequence of G9a down regulation is a critical step which facilitated transition to different stemness state through creating a new epigenetic memory for the early germ cells.   Keywords: Epigenetic, hypomethylation, Germ line Stem Cells, polycistroniclentiviral vector

    Pluripotency induction in HEK293T cells by concurrent expression of STELLA, OCT4 and NANOS2

    No full text
    Germline stem cells (GSCs) are attractive biological models because of their strict control on pluripotency gene expression, and their potential for huge epigenetic changes in a short period of time. Few data exists on the cooperative impact of GSC-specific genes on differentiated cells. In this study, we over-expressed 3 GSC-specific markers, STELLA, OCT4 and NANOS2, collectively designated as (SON), using the novel polycistronic lentiviral gene construct FUM-FD, in HEK293T cells and evaluated promoter activity of the Stra8 GSC marker gene We could show that HEK293T cells expressed pluripotency and GSC markers following ectopic expression of the SON genes. We also found induction of pluripotency markers after serum starvation in non-transduced HEK293T cells. Expression profiling of SON-expressing and serum-starved cells at mRNA and protein level showed the potential of SON factors and serum starvation in the induction of ESRRB, NANOG, OCT4 and REX1 expression. Additionally, the data indicated that the mouse Stra8 promoter could only be activated in a subpopulation of HEK293T cells, regardless of SON gene expression. We conclude that heterogeneous population of the HEK293T cells might be easily shifted towards expression of the pluripotency markers by ectopic expression of the SON factors or by growth in serum depleted media

    Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability

    No full text
    Objective(s):The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a few passages which influence their therapeutic applications negatively. This study investigated whether treatment of BM-MSCs with hypoxia-mimicking agents would increase expression of some chemokine receptors and cell migration. Materials and Methods: BM-MSCs were treated at passage 2 for our gene expression profiling. All qPCR experiments were performed by SYBR Green method in CFX-96 Bio-Rad Real-Time PCR. The Boyden chamber assay was utilized to investigate BM-MSC homing. Results:Possible approaches to increasing the expression level of chemokine receptors by different hypoxia-mimicking agents such as valproic acid (VPA), CoCl2, and desferrioxamine (DFX) are described. Results show DFX efficiently up-regulate the CXCR7 and CXCR4 gene expression while VPA increase only the CXCR7 gene expression and no significant change in expression level of CXCR4 and the CXCR7 gene was detectable by CoCl2 treatment. Chemotaxis assay results show that pre-treatment with DFX, VPA, and Cocl2 enhances significantly the migration ability of BM-MSCs compared with the untreated control group and DFX treatment accelerates MSCs homing significantly with a higher rate than VPA and Cocl2 treatments. Conclusion: Our data supports the notion that pretreatment of MSC with VPA and DFX improves the efficiency of MSC therapy by triggering homing regulatory signaling pathways
    corecore