283 research outputs found
Rhodium/phospholane-phosphite catalysts give unusually high regioselectivity in the enantioselective hydroformylation of vinyl arenes
Using the phospholane-phosphite ligand, BOBPHOS, almost perfect regioselectivities and high enantioselectivities (up to 92% ee) are observed in Rh catalysed enantioselective hydroformylation of vinyl arenes. This can be achieved under solvent-free conditions.PostprintPeer reviewe
Genetic Interactions Affect Lung Function in Patients with Systemic Sclerosis.
Scleroderma, or systemic sclerosis (SSc), is an autoimmune disease characterized by progressive fibrosis of the skin and internal organs. The most common cause of death in people with SSc is lung disease, but the pathogenesis of lung disease in SSc is insufficiently understood to devise specific treatment strategies. Developing targeted treatments requires not only the identification of molecular processes involved in SSc-associated lung disease, but also understanding of how these processes interact to drive pathology. One potentially powerful approach is to identify alleles that interact genetically to influence lung outcomes in patients with SSc. Analysis of interactions, rather than individual allele effects, has the potential to delineate molecular interactions that are important in SSc-related lung pathology. However, detecting genetic interactions, or epistasis, in human cohorts is challenging. Large numbers of variants with low minor allele frequencies, paired with heterogeneous disease presentation, reduce power to detect epistasis. Here we present an analysis that increases power to detect epistasis in human genome-wide association studies (GWAS). We tested for genetic interactions influencing lung function and autoantibody status in a cohort of 416 SSc patients. Using Matrix Epistasis to filter SNPs followed by the Combined Analysis of Pleiotropy and Epistasis (CAPE), we identified a network of interacting alleles influencing lung function in patients with SSc. In particular, we identified a three-gene network comprising WNT5A, RBMS3, and MSI2, which in combination influenced multiple pulmonary pathology measures. The associations of these genes with lung outcomes in SSc are novel and high-confidence. Furthermore, gene coexpression analysis suggested that the interactions we identified are tissue-specific, thus differentiating SSc-related pathogenic processes in lung from those in skin
Chimera States and Seizures in a Mouse Neuronal Model
Chimera states - the coexistence of synchrony and asynchrony in a nonlocally-coupled network of identical oscillators - are often used as a model framework for epileptic seizures. Here, we explore the dynamics of chimera states in a network of modified Hindmarsh-Rose neurons, configured to reflect the graph of the mesoscale mouse connectome. Our model produces superficially epileptiform activity converging on persistent chimera states in a large region of a two-parameter space governing connections (a) between subcortices within a cortex and (b) between cortices. Our findings contribute to a growing body of literature suggesting mathematical models can qualitatively reproduce epileptic seizure dynamics
System-Level Analysis of Alzheimer\u27s Disease Prioritizes Candidate Genes for Neurodegeneration.
Alzheimer\u27s disease (AD) is a debilitating neurodegenerative disorder. Since the advent of the genome-wide association study (GWAS) we have come to understand much about the genes involved in AD heritability and pathophysiology. Large case-control meta-GWAS studies have increased our ability to prioritize weaker effect alleles, while the recent development of network-based functional prediction has provided a mechanism by which we can use machine learning to reprioritize GWAS hits in the functional context of relevant brain tissues like the hippocampus and amygdala. In parallel with these developments, groups like the Alzheimer\u27s Disease Neuroimaging Initiative (ADNI) have compiled rich compendia of AD patient data including genotype and biomarker information, including derived volume measures for relevant structures like the hippocampus and the amygdala. In this study we wanted to identify genes involved in AD-related atrophy of these two structures, which are often critically impaired over the course of the disease. To do this we developed a combined score prioritization method which uses the cumulative distribution function of a gene\u27s functional and positional score, to prioritize top genes that not only segregate with disease status, but also with hippocampal and amygdalar atrophy. Our method identified a mix of genes that had previously been identified in AD GWAS including APOE, TOMM40, and NECTIN2(PVRL2) and several others that have not been identified in AD genetic studies, but play integral roles in AD-effected functional pathways including IQSEC1, PFN1, and PAK2. Our findings support the viability of our novel combined score as a method for prioritizing region- and even cell-specific AD risk genes
Differential regulation of gene expression pathways with dexamethasone and ACTH after early life seizures.
Early-life seizures (ELS) are associated with persistent cognitive deficits such as ADHD and memory impairment. These co-morbidities have a dramatic negative impact on the quality of life of patients. Therapies that improve cognitive outcomes have enormous potential to improve patients\u27 quality of life. Our previous work in a rat flurothyl-induction model showed that administration of adrenocorticotropic hormone (ACTH) at time of seizure induction led to improved learning and memory in the animals despite no effect on seizure latency or duration. Administration of dexamethasone (Dex), a corticosteroid, did not have the same positive effect on learning and memory and has even been shown to exacerbate injury in a rat model of temporal lobe epilepsy. We hypothesized that ACTH exerted positive effects on cognitive outcomes through beneficial changes to gene expression and proposed that administration of ACTH at seizure induction would return gene-expression in the brain towards the normal pattern of expression in the Control animals whereas Dex would not. Twenty-six Sprague-Dawley rats were randomized into vehicle- Control, and ACTH-, Dex-, and vehicle- ELS. Rat pups were subjected to 60 flurothyl seizures from P5 to P14. After seizure induction, brains were removed and the hippocampus and PFC were dissected, RNA was extracted and sequenced, and differential expression analysis was performed using generalized estimating equations. Differential expression analysis showed that ACTH pushes gene expression in the brain back to a more normal state of expression through enrichment of pathways involved in supporting homeostatic balance and down-regulating pathways that might contribute to excitotoxic cell-damage post-ELS
Comparison of Current Sarcopenia Classification Criteria in Older New England Women
Objectives: To evaluate the prevalence of sarcopenia in a sample of older, sedentary women using criteria from the European Working Group on Sarcopenia in Older People (EWGSOP), the International Working Group (IWG), and the Foundation for the National Institutes of Health Sarcopenia Project (FNIHSP). Design: Cross-sectional analysis. Setting and Participants: Community-dwelling women (n = 61) aged 71.9 ± 4.6 years (mean±SD) with a BMI 27.3 ± 6.0 kg/m2 who by self-report were healthy and did not exercise were recruited and evaluated for sarcopenia. Measurements: Height, weight, grip strength, gait speed, and appendicular lean mass (via segmental multi-frequency bioelectrical impedance analysis: SMF-BIA) were measured. Prevalence was reported using descriptive statistics and a Fisher’s exact test was used to analyze the distribution frequency of sarcopenia classification by different criteria. Results: In this sample 14.8% met EWGSOP criteria, 6.6% met FNIHSP criteria, and 3.3% met IWG criteria. There was a borderline significant difference in distribution frequency between EWGSOP and IWG classification criteria (p=0.053). Conclusion: The variation in sarcopenia prevalence depending on the diagnostic criteria used is consistent with previous research and there are borderline significant differences between classification criteria in this population. These data suggest the need for additional examination to determine current cut points for ALM measured by SMF-BIA, as well as which established definition of sarcopenia is appropriate for this population
Live-Cell Monitoring of Periodic Gene Expression in Synchronous Human Cells Identifies Forkhead Genes involved in Cell Cycle Control
We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle-dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant
State-Dependent Differences in Functional Connectivity in Young Children With Autism Spectrum Disorder
AbstractBackgroundWhile there is increasing evidence of altered brain connectivity in autism, the degree and direction of these alterations in connectivity and their uniqueness to autism has not been established. The aim of the present study was to compare connectivity in children with autism to that of typically developing controls and children with developmental delay without autism.MethodsWe assessed EEG spectral power, coherence, phase lag, Pearson and partial correlations, and epileptiform activity during the awake, slow wave sleep, and REM sleep states in 137 children aged 2 to 6years with autism (n=87), developmental delay without autism (n=21), or typical development (n=29).FindingsWe found that brain connectivity, as measured by coherence, phase lag, and Pearson and partial correlations distinguished children with autism from both neurotypical and developmentally delayed children. In general, children with autism had increased coherence which was most prominent during slow wave sleep.InterpretationFunctional connectivity is distinctly different in children with autism compared to samples with typical development and developmental delay without autism. Differences in connectivity in autism are state and region related. In this study, children with autism were characterized by a dynamically evolving pattern of altered connectivity
- …