34 research outputs found

    Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR.

    Get PDF
    A rapid method for the detection of Listeria monocytogenes in foods combining culture enrichment and real-time PCR was compared to the ISO 11290-1 standard method. The culture enrichment component of the rapid method is based on the ISO standard and includes 24h incubation in half-Fraser broth, 4h incubation in Fraser broth followed by DNA extraction and real-time PCR detection of the ssrA gene of L. monocytogenes. An internal amplification control, which is co-amplified with the same primers as the L. monocytogenes DNA, was also included in the assay. The method has a limit of detection of 1-5CFU/25g food sample and can be performed in 2 working days compared to up to 7days for the ISO standard. A variety of food samples from retail outlets and food processing plants (n=175) and controls (n=31) were tested using rapid and conventional methods. The rapid method was 99.44% specific, 96.15% sensitive and 99.03% accurate when compared to the standard method. This method has the potential to be used as an alternative to the standard method for food quality assurance providing rapid detection of L. monocytogenes in food

    tmRNA - a novel high-copy-number RNA diagnostic target - its application for Staphylococcus aureus detection using real-time NASBA

    Get PDF
    A real-time nucleic acid sequence-based amplification assay, targeting tmRNA, was designed for the rapid identification of Staphylococcus aureus. The selectivity of the assay was confirmed against a panel of 76 Staphylococcus strains and species and 22 other bacterial species. A detection limit of 1 cell equivalent was determined for the assay. A chimeric in vitro transcribed internal amplification control was developed and included in the assay. Application of the assay in natural and artificially contaminated unpasteurized (raw) milk enabled detection of 1-10 CFUS. aureus mL(-1) in 3-4 h, without the need for culture enrichment. Staphylococcus aureus was detected in all artificially contaminated milk samples (n=20) and none of the natural milk samples (n=20). Microbiological analysis of the natural milk samples was performed in parallel according to ISO 6888-3 and confirmed the absence of S. aureus. The method developed in this study has the potential to enable the specific detection of S. aureus in raw milk in a significantly shorter time frame than current standard methods. The assay further demonstrates the usefulness of tmRNA/ssrA as a nucleic acid diagnostic target

    APCR, factor V gene known and novel SNPs and adverse pregnancy outcomes in an Irish cohort of pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activated Protein C Resistance (APCR), a poor anticoagulant response of APC in haemostasis, is the commonest heritable thrombophilia. Adverse outcomes during pregnancy have been linked to APCR. This study determined the frequency of APCR, factor V gene known and novel SNPs and adverse outcomes in a group of pregnant women.</p> <p>Methods</p> <p>Blood samples collected from 907 pregnant women were tested using the Coatest<sup>® </sup>Classic and Modified functional haematological tests to establish the frequency of APCR. PCR-Restriction Enzyme Analysis (PCR-REA), PCR-DNA probe hybridisation analysis and DNA sequencing were used for molecular screening of known mutations in the factor V gene in subjects determined to have APCR based on the Coatest<sup>® </sup>Classic and/or Modified functional haematological tests. Glycosylase Mediated Polymorphism Detection (GMPD), a SNP screening technique and DNA sequencing, were used to identify SNPs in the factor V gene of 5 APCR subjects.</p> <p>Results</p> <p>Sixteen percent of the study group had an APCR phenotype. Factor V Leiden (FVL), FV Cambridge, and haplotype (H) R2 alleles were identified in this group. Thirty-three SNPs; 9 silent SNPs and 24 missense SNPs, of which 20 SNPs were novel, were identified in the 5 APCR subjects. Adverse pregnancy outcomes were found at a frequency of 35% in the group with APCR based on Classic Coatest<sup>® </sup>test only and at 45% in the group with APCR based on the Modified Coatest<sup>® </sup>test. Forty-eight percent of subjects with FVL had adverse outcomes while in the group of subjects with no FVL, adverse outcomes occurred at a frequency of 37%.</p> <p>Conclusions</p> <p>Known mutations and novel SNPs in the factor V gene were identified in the study cohort determined to have APCR in pregnancy. Further studies are required to investigate the contribution of these novel SNPs to the APCR phenotype. Adverse outcomes including early pregnancy loss (EPL), preeclampsia (PET) and intrauterine growth restriction (IGUR) were not significantly more frequent in subjects with APCR compared to normal pregnant women however Pregnancy induced hypertension (PIH) was found to be associated with FVL in our study group.</p

    Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target

    Get PDF
    A real-time PCR assay was designed to detect a 162-bp fragment of the ssrA gene in Listeria monocytogenes. The specificity of the assay for L. monocytogenes was confirmed against a panel of 6 Listeria species and 26 other bacterial species. A detection limit of 1-10 genome equivalents was determined for the assay. Application of the assay in natural and artificially contaminated culture enriched foods, including soft cheese, meat, milk, vegetables and fish, enabled detection of 1-5 CFU L. monocytogenes per 25g/ml of food sample in 30h. The performance of the assay was compared with the Roche Diagnostics 'LightCycler foodproof Listeria monocytogenes Detection Kit'. Both methods detected L. monocytogenes in all artificially contaminated retail samples (n=27) and L. monocytogenes was not detected by either system in 27 natural retail food samples. The method developed in this study has the potential to enable the specific detection of L. monocytogenes in a variety of food types in a time-frame considerably faster than current standard methods. The potential of the ssrA gene as a nucleic acid diagnostic (NAD) target has been demonstrated in L. monocytogenes. We are currently developing NAD tests based on the ssrA gene for a range of common foodborne and clinically relevant bacterial pathogens

    Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics.

    Get PDF
    We demonstrate the first integrated microfluidic tmRNA purification and nucleic acid sequence-based amplification (NASBA) device incorporating real-time detection. The real-time amplification and detection step produces pathogen-specific response in < 3 min from the chip-purified RNA from 100 lysed bacteria. On-chip RNA purification uses a new silica bead immobilization method. On-chip amplification uses custom-designed high-selectivity primers and real-time detection uses molecular beacon fluorescent probe technology; both are integrated on-chip with NASBA. Present in all bacteria, tmRNA (10Sa RNA) includes organism-specific identification sequences, exhibits unusually high stability relative to mRNA, and has high copy number per organism; the latter two factors improve the limit of detection, accelerate time-to-positive response, and suit this approach ideally to the detection of small numbers of bacteria. Device efficacy was demonstrated by integrated on-chip purification, amplification, and real-time detection of 100 E. coli bacteria in 100 microL of crude lysate in under 30 min for the entire process

    Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the implementation of prevention guidelines, early-onset group B streptococci (GBS) disease remains a cause of neonatal morbidity and mortality worldwide. Strategies to identify women who are at risk of transmitting GBS to their infant and the administration of intrapartum antibiotics have greatly reduced the incidence of neonatal GBS disease. However, there is a requirement for a rapid diagnostic test for GBS that can be carried out in a labour ward setting especially for women whose GBS colonisation status is unknown at the time of delivery. We report the design and evaluation of a real-time PCR test (<it>RiboSEQ </it>GBS test) for the identification of GBS in vaginal swabs from pregnant women.</p> <p>Methods</p> <p>The qualitative real-time PCR <it>RiboSEQ </it>GBS test was designed based on the bacterial <it>ssrA </it>gene and incorporates a competitive internal standard control. The analytical sensitivity of the test was established using crude lysate extracted from serial dilutions of overnight GBS culture using the IDI Lysis kit. Specificity studies were performed using DNA prepared from a panel of GBS strains, related streptococci and other species found in the genital tract environment. The <it>RiboSEQ </it>GBS test was evaluated on 159 vaginal swabs from pregnant women and compared with the GeneOhm™ StrepB Assay and culture for the identification of GBS.</p> <p>Results</p> <p>The <it>RiboSEQ </it>GBS test is specific and has an analytical sensitivity of 1-10 cell equivalents. The <it>RiboSEQ </it>GBS test was 96.4% sensitive and 95.8% specific compared to "gold standard" culture for the identification of GBS in vaginal swabs from pregnant women. In this study, the <it>RiboSEQ </it>GBS test performed slightly better than the commercial BD GeneOhm™ StrepB Assay which gave a sensitivity of 94.6% and a specificity of 89.6% compared to culture.</p> <p>Conclusion</p> <p>The <it>RiboSEQ </it>GBS test is a valuable method for the rapid, sensitive and specific detection of GBS in pregnant women. This study also validates the <it>ssrA </it>gene as a suitable and versatile target for nucleic acid-based diagnostic tests for bacterial pathogens.</p

    Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    Get PDF
    BACKGROUND: Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA) with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP) molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. RESULTS: Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. CONCLUSION: We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology

    Evaluation of taxa-specific real-time pcr, whole-cell fish and morphotaxonomy analyses for the detection and quantification of the toxic microalgae alexandrium minutum (dinophyceae), global clade ribotype

    No full text
    The dinoflagellate genus Alexandrium contains neurotoxin-producing species that have adversely affected the aquaculture industry in many countries. The morphological similarity between Alexandrium species has led to the development of molecular methods for the discrimination, enumeration and monitoring of toxic and nontoxic species. A quantitative real-time PCR assay (qRT-PCR) targeting the internal transcribed spacer 1-5.8S rRNA gene using hybridization probe technology was developed for the potentially toxic species Alexandrium minutum (Global Clade) (GC). The assay was specific with a detection limit of less than one cell equivalent. The assay was used to detect and quantify A. minutum (GC) in seawater samples collected during summer 2007 in Cork Harbour, Ireland. The results were compared with those obtained using whole-cell FISH (WC-FISH) and morphotaxonomy analyses. Alexandrium minutum did not reach high bloom concentrations over the sampling period (maximum of c. 6 x 10(4) cells L(-1)), and the average concentrations determined using qRT-PCR, WC-FISH and morphotaxonomy did not significantly differ in eight of nine comparisons. Regression curves showed positive relationships between the methods; WC-FISH and qRT-PCR slightly under- and overestimated, respectively, the A. minutum concentrations compared with the morphotaxonomy method. The qRT-PCR assay for A. minutum (GC) offers high-throughput sample analysis and may prove suitable for implementation in microalgae monitoring programmes and assist in population dynamics studies of the species

    Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains

    Get PDF
    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.peer-reviewe
    corecore