16 research outputs found

    Detection of Viruses from Bioaerosols Using Anion Exchange Resin

    Get PDF
    This protocol demonstrates a customized bioaerosol sampling method for viruses. In this system, anion exchange resin is coupled with liquid impingement-based air sampling devices for efficacious concentration of negatively-charged viruses from bioaerosols. Thus, the resin serves as an additional concentration step in the bioaerosol sampling workflow. Nucleic acid extraction of the viral particles is then performed directly from the anion exchange resin, with the resulting sample suitable for molecular analyses. Further, this protocol describes a custom-built bioaerosol chamber capable of generating virus-laden bioaerosols under a variety of environmental conditions and allowing for continuous monitoring of environmental variables such as temperature, humidity, wind speed, and aerosol mass concentration. The main advantage of using this protocol is increased sensitivity of viral detection, as assessed via direct comparison to an unmodified conventional liquid impinger. Other advantages include the potential to concentrate diverse negatively-charged viruses, the low cost of anion exchange resin (~$0.14 per sample), and ease of use. Disadvantages include the inability of this protocol to assess infectivity of resin-adsorbed viral particles, and potentially the need for the optimization of the liquid sampling buffer used within the impinger

    Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency

    No full text
    Considerable efforts have been made to increase the energy efficiency of school buildings across the country. Despite this, limited research examines the relationship between energy efficiency and student productivity. We use a unique panel dataset from a suburban school district that includes information on school building energy efficiency, measured by Energy Star scores, and other environmental attributes of buildings, as well as measures of individual student achievement, measured by standardized test scores. The empirical analysis controls for student and school fixed effects and evaluates the relationship between school characteristics and achievement. Separate models also evaluate how school characteristics impact student health and behavioral outcomes and the how these outcomes influence student test scores. We find no evidence that Energy Star scores have an impact on the indoor school environment or student performance on standardized tests, suggesting that building energy performance does not come at a cost to the performance of building inhabitants. We also find positive relationships between building thermal comfort and visual quality and standard test scores. Overall, the results highlight the importance of considering both the environmental and human capital impacts associated with decisions about investments in school infrastructure

    Optimizing community-level surveillance data for pediatric asthma management

    Get PDF
    Community-level approaches for pediatric asthma management rely on locally collected information derived primarily from two sources: claims records and school-based surveys. We combined claims and school-based surveillance data, and examined the asthma-related risk patterns among adolescent students.Symptom data collected from school-based asthma surveys conducted in Oakland, CA were used for case identification and determination of severity levels for students (high and low). Survey data were matched to Medicaid claims data for all asthma-related health care encounters for the year prior to the survey. We then employed recursive partitioning to develop classification trees that identified patterns of demographics and healthcare utilization associated with severity.A total of 561 students had complete matched data; 86.1% were classified as high-severity, and 13.9% as low-severity asthma. The classification tree consisted of eight subsets: three indicating high severity and five indicating low severity. The risk subsets highlighted varying combinations of non-specific demographic and socioeconomic predictors of asthma prevalence, morbidity and severity. For example, the subset with the highest class-prior probability (92.1%) predicted high-severity asthma and consisted of students without prescribed rescue medication, but with at least one in-clinic nebulizer treatment. The predictive accuracy of the tree-based model was approximately 66.7%, with an estimated 91.1% of high-severity cases and 42.3% of low-severity cases correctly predicted.Our analysis draws on the strengths of two complementary datasets to provide community-level information on children with asthma, and demonstrates the utility of recursive partitioning methods to explore a combination of features that convey asthma severity. Keywords: Asthma, Classification, Risk stratification, Statistical data analysis, Disease managemen

    Characterization of Indoor Air Quality on a College Campus: A Pilot Study

    No full text
    Recent construction trends on college campuses have demonstrated a shift to designing buildings with features focused on sustainability. However, few studies have investigated indoor air quality in institutions of higher education, particularly in sustainably designed buildings. The objective of this study was to evaluate the association of building and occupancy on indoor air quality within and between higher education buildings. We measured particulate matter, formaldehyde, carbon dioxide, and nitrogen oxides in LEED certified, retrofitted, and conventional building types on a college campus. Three size fractions of particulate matter were measured in each building. We conducted multi-zonal, 48-h measurements when the buildings were occupied and unoccupied. Outdoor particulate matter was significantly higher (PM2.5 = 4.76, PM4 = 17.1, and PM100 = 21.6 µg/m3) than in classrooms (PM2.5 = 1.7, PM4 = 4.2, and PM100 = 6.7 µg/m3) and common areas (PM2.5 = 1.3, PM4 = 4.2, and PM100 = 4.8 µg/m3; all p < 0.001). Additionally, concentrations of carbon dioxide and particulate matter were significantly higher (p < 0.05) during occupied sampling. The results suggest that occupancy status and building zone are major predictors of indoor air quality in campus buildings, which can, in turn, increase the concentration of contaminants, potentially impacting occupant health and performance. More research is warranted to reveal building features and human behaviors contributing to indoor exposures

    Detection of Viruses from Bioaerosols Using Anion Exchange Resin

    Get PDF
    This protocol demonstrates a customized bioaerosol sampling method for viruses. In this system, anion exchange resin is coupled with liquid impingement-based air sampling devices for efficacious concentration of negatively-charged viruses from bioaerosols. Thus, the resin serves as an additional concentration step in the bioaerosol sampling workflow. Nucleic acid extraction of the viral particles is then performed directly from the anion exchange resin, with the resulting sample suitable for molecular analyses. Further, this protocol describes a custom-built bioaerosol chamber capable of generating virus-laden bioaerosols under a variety of environmental conditions and allowing for continuous monitoring of environmental variables such as temperature, humidity, wind speed, and aerosol mass concentration. The main advantage of using this protocol is increased sensitivity of viral detection, as assessed via direct comparison to an unmodified conventional liquid impinger. Other advantages include the potential to concentrate diverse negatively-charged viruses, the low cost of anion exchange resin (~$0.14 per sample), and ease of use. Disadvantages include the inability of this protocol to assess infectivity of resin-adsorbed viral particles, and potentially the need for the optimization of the liquid sampling buffer used within the impinger

    Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers

    No full text
    Livestock workers experience an increased burden of bioaerosol-induced respiratory disease including a high prevalence of rhinosinusitis. Dairy operations generate bioaerosols spanning the inhalable size fraction (0–100 μm) containing bacterial constituents such as endotoxin. Particles with an aerodynamic diameter between 10 and 100 μm are known to deposit in the nasopharyngeal region and likely affect the upper respiratory tract. We evaluated the effectiveness of a hypertonic saline nasal lavage in reducing inflammatory responses in dairy workers from a high-volume dairy operation. Inhalable personal breathing zone samples and pre-/post-shift nasal lavage samples from each participant over five consecutive days were collected. The treatment group (n = 5) received hypertonic saline while the control group (n = 5) received normotonic saline. Personal breathing zone samples were analyzed for particulate concentrations and endotoxin using gravimetric and enzymatic methods, respectively. Pro- and anti-inflammatory cytokines (i.e., IL-8, IL-10, and TNF-α) were measured from nasal lavage samples using a multiplex assay. Inhalable dust concentrations ranged from 0.15 to 1.9 mg/m3. Concentrations of both pro- and anti-inflammatory cytokines, specifically IL-6, IL-8, and IL-10, were significantly higher in the treatment group compared to the control group (p p p < 0.01, respectively). Further analysis of IL-10 anti-inflammatory indicates a positive association between hypertonic saline administration and IL-10 production. This pilot study demonstrates that hypertonic saline nasal lavages were successful in upregulating anti-inflammatory cytokines to support larger interventional studies.</p
    corecore