182 research outputs found

    Synthesis, characterization and biocompatibility of a multifunctional gold nanoparticle system for the delivery of single-stranded RNA to lymphocytes

    Get PDF
    The use of RNA macromolecules as therapeutic agents for HIV and other infectious diseases is promising but limited by suboptimal delivery to the target site. With HIV infection, this is particularly challenging since lymphocytes are particularly difficult to transfect. This paper describes an innovative strategy for the intracellular delivery of a novel single-stranded RNA (oligoribonucleotide) with putative anti-HIV activity. This strategy is based on a PEGylated gold nanoparticle scaffold covalently linked to the thiol-modified oligoribonucleotide via a cleavable N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) linker molecule. The nanoparticle was then coated with a cationic polymer (polyethyleneimine) to facilitate cell entry and endosomal escape. A synthetic anti-CD4 cyclic targeting peptide was attached to the polyethyleneimine-coated nanoparticle via an SPDP linker molecule, in an attempt to enhance uptake and selectivity. Synthesis, characterization, SPDP and RNA loading, cytotoxicity and antiviral activity of the nanoparticle are described. Approximately 45 000 strands of RNA were taken up per lymphocyte. Uptake was limited by relatively inefficient loading ofRNAonto the gold nanoparticle surface (1 strand per 4.8 nm2 of nanoparticle surface area) and significant aggregation of the nanoparticle in physiological solutions. No antiviral activity was demonstrated, possibly due to insufficient intracytoplasmic delivery of the RNA.Keywords: Gold nanoparticle, polyethyleneimine, transfection, RNA deliver

    (S)-N-Benzyl-2-methyl-1,2,3,4-tetra­hydro­isoquinoline-3-carboxamide

    Get PDF
    The structure of the title compound, C18H20N2O, at 173 K has hexa­gonal (P61) symmetry. The N-containing six-membered ring assumes a half-chair conformation. In the crystal, inter­molecular N—H⋯O hydrogen bonding via the amide groups cross-link the mol­ecules along the a axis. The absolute configuration was confirmed by 2D NMR studies

    3-Benzyl-5,7-dimeth­oxy­chroman-4-ol

    Get PDF
    In the crystal structure of the title compound, C18H20O4, O—H⋯O hydrogen bonds connect the mol­ecules in parallel layers along the b axis

    Microwave-assisted synthesis of meso-carboxyalkyl-BODIPYs and an application to fluorescence imaging

    Get PDF
    Please read abstract in the article.http://pubs.rsc.org/en/Journals/JournalIssues/OB2021-09-21hj2021Nuclear Medicin

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore