58 research outputs found

    The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution.

    Get PDF
    The 67-kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that mediates high-affinity interactions between cells and laminin. Overexpression of this protein in tumor cells has been related to tumor invasion and metastasis. Thus far, only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated. The finding that the cDNA for the 37LRP is virtually identical to a cDNA encoding the ribosomal protein p40 has suggested that 37LRP is actually a component of the translational machinery, with no laminin-binding activity. On the other hand, a peptide of 20 amino acids deduced from the sequence of 37LR/p40 was shown to exhibit high laminin-binding activity. The evolutionary relationship between 23 sequences of 37LRP/p40 proteins was analyzed. This phylogenetic analysis indicated that all of the protein sequences derive from orthologous genes and that the 37LRP is indeed a ribosomal protein that acquired the novel function of laminin receptor during evolution. The evolutionary analysis of the sequence identified as the laminin-binding site in the human protein suggested that the acquisition of the laminin-binding capability is linked to the palindromic sequence LMWWML, which appeared during evolution concomitantly with laminin

    Efficacy and microbiota modulation induced by limpial 2.5%, a new medical device for the inverse psoriasis treatment

    Get PDF
    (1) Inverse psoriasis (IP), also known as intertriginous, typically affects the groin, armpits, navel, intergluteal fissure, and external genitalia. Skin lesions are erythematous plaques of inflammatory nature, smooth, well-delimited, non-scaly, and non-infiltrated. Lesions may be accompanied by itching, pain, or burning sensation. The aim of this study is both to investigate the modulation of the skin microbiota induced by IP and, on the other hand, to test the effectiveness of the new biotechnological product LimpiAL 2.5%. (2) Patients affected by IP were recruited in a private practice and treated for 4 weeks with LimpiAL 2.5% exclusively. The clinical effects on the lesion skin were evaluated, and the skin microbiotas before and after treatment were compared. (3) The clinical outcomes reveled a significant beneficial effect of the tested product. At the same time, LimpiAL increased the biological diversity of the skin microbiota and exerted a significant decrease of some Corynebacterium species, and the increase of some Staphylococcus species. (4) Together, the clinical outcomes and the microbiota analysis suggest that LimpiAL treatment improves the skin condition of affected patients, basically restoring the eubiosis conditions of the affected sites and modulating the bacterial composition of the resident microbiota

    Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells

    Full text link
    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival

    Distributed actuation concepts for a morphing aileron device

    No full text
    The actuation mechanism is a crucial aspect in the design of morphing structures due to the very stringent requirements involving actuation torque, consumed power, and allowable size and weight. In the framework of the CRIAQ MD0-505 project, novel design strategies are investigated to enable morphing of aeronautical structures. This paper deals with the design of a morphing aileron with the main focus on the actuation technology. The morphing aileron consists of segmented ’finger-like’ ribs capable of changing the airfoil camber in order to match target aerodynamic shapes. In this work, lightweight and compact actuation kinematics driven by electromechanical actuators are investigated to actuate the morphing device. An unshafted distributed servo-electromechanical actuation arrangement is employed to realise the transition from the baseline configuration to a set of target aerodynamic shapes by also withstanding the aerodynamics loads. Numerical investigations are detailed to identify the optimal actuation architecture matching as well as the system integrability and structural compactness

    KRISTINA: Kinematic Rib based Structural system for Innovative Adaptive trailing edge

    No full text
    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of “metamorphic” wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements

    Damping levels induced by morphing skin on an adaptive trailing edge device (ATED)

    No full text
    The development of aircraft structural morphing devices involves the integration of complex and different systems, interacting and modifying their uncoupled characteristics. In detail, when adaptive skins, designed to afford the exceptional deformations needed to achieve morphing capabilities, are integrated into the actuation structural system, mass, stiffness and damping aspects are highly affected. This fact can have relevant impacts for the design process either from the static (load-bearing capabilities) and the dynamic (aeroelastic response, mainly), point of view. In order to properly characterise these important aspects, the manufacture of intermediate demonstrators was decided, not implementing all the design solutions yet but giving emphasis at certain subsystems. A mock-up was initially manufactured, whose structural properties (ability to carry out loads) were simply guaranteed by the elastic skin. The structural characteristics of the second one were insuured by the actuator system, only. The final one integrated both the concepts. The comparison of the results among the three allowed giving hints on the behaviour of the single and coupled subcomponents. In this paper, experimental modal analysis results are discussed, specifically addressed at characterising the damping coefficient, so important for aeroelasticity aspects

    Peptide G, containing the binding site of the 67-kDa laminin receptor, increases and stabilizes laminin binding to cancer cells.

    Full text link
    We investigated the effect of peptide G, a synthetic peptide derived from the sequence of the 37-kDa laminin receptor precursor, on the interaction of laminin in two tumor cell lines one of which produces laminin and one of which does not. Addition of peptide G to the culture medium induced a significant increase in the amount of endogenous laminin detectable on the cell membrane of both cell lines. Moreover, pretreatment of exogenous laminin with peptide G dramatically increased laminin binding on both cell lines. Kinetics analysis of membrane-bound labeled laminin revealed a 3-fold decrease in the kd of peptide G-treated laminin compared with untreated or unrelated or scrambled peptide-treated laminin. Moreover, the affinity constant of peptide G-treated laminin increased 2-fold, with a doubling of the number of laminin binding sites, as determined by Scatchard analysis. Expression of the VLA6 integrin receptor on the cell membrane increased after incubation with peptide G-treated laminin. However, the lower binding inhibition of peptide G-treated laminin after anti-VLA6 antibody or cation chelation treatment indicates that membrane molecules in addition to integrin receptors are involved in the recognition of peptide G-modified laminin. These "new" laminin-binding proteins also mediated cell adhesion to laminin, the first step in tumor invasion. Together, the data suggest that peptide G increases and stabilizes laminin binding on tumor cells, involving surface receptors that normally do not take part in this interaction. This might explain the abundant clinical and experimental data suggesting a key role for the 67-kDa laminin receptor in the interaction between cancer cells and the basement membrane glycoprotein laminin during tumor invasion and metastasis

    Co-regulation and physical association of the 67-kDa monomeric laminin receptor and the alpha6beta4 integrin.

    Full text link
    The interactions between tumor cells and laminin or other components of the extracellular matrix have been shown to play an important role in tumor invasion and metastasis. However, the role of the monomeric 67-kDa laminin receptor (67LR) remains unclear. We analyzed the regulation of 67LR expression under different culture conditions with respect to the expression of other well characterized laminin receptors. In A431 cells treated with laminin for different time periods, the regulation of 67LR expression correlated with expression of the alpha6 integrin subunit but not with the expression of other laminin receptors. Moreover, cytokine treatment resulted in down-modulated expression of the alpha6 integrin subunit and the 67LR. Co-regulation of the expression of the two receptors was further suggested by the observation that specific down-modulation of the alpha6-chain by antisense oligonucleotides was accompanied by a proportional decrease in the cell surface expression of 67LR. Biochemical analyses indicated co-immunoprecipitation of 67LR and the alpha6 subunit with an anti-alpha6 but not an anti-beta1 monoclonal antibody. Co-regulation of 67LR and alpha6 subunit expression, together with the physical association between the two receptors, supports the hypothesis that 67LR is an auxiliary molecule involved in regulating or stabilizing the interaction of laminin with the alpha6beta4 integrin
    corecore