146 research outputs found
A Comparative Study of the Dentate Gyrus in Hippocampal Sclerosis in Epilepsy and Dementia.
Hippocampal Sclerosis (HS) is long-recognised in association with epilepsy (HSE ) and more recently in the context of cognitive decline or dementia in the elderly (HSD ), in some cases as a component of neurodegenerative diseases, including Alzheimer's disease (AD) and fronto-temporal lobe dementia (FTLD). There is an increased risk of seizures in AD and spontaneous epileptiform discharges in the dentate gyrus of transgenic AD models; epilepsy can be associated with an age-accelerated increase in AD-type pathology and cognitive decline. The convergence between these disease processes could be related to hippocampal pathology. HSE typically shows re-organisation of both excitatory and inhibitory neuronal networks in the dentate gyrus, and is considered to be relevant to hippocampal excitability. We sought to compare the pathology of HSE and HSD , focusing on re-organisation in the dentate gyrus
AAV Vector-Mediated Overexpression of CB1 Cannabinoid Receptor in Pyramidal Neurons of the Hippocampus Protects against Seizure-Induced Excitoxicity
The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV) genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity
Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus
We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus
Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats
Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG
At The Top of the Interneuronal Pyramid - Calretinin Expressing Cortical Interneurons
It is in general well appreciated that the cortical interneurons play various important roles in cortical neuronal networks both in normal and pathological states. Based on connectivity pattern, developmental, morphological and electrophysiological properties, distinct subgroups of GABAergic interneurons can be differentiated in the neocortex as well as in the hippocampal formation. In this E-Book, we are focusing our attention on inhibitory interneurons expressing calcium-binding protein calretinin (CR). The aim of the E-Book is to consolidate the knowledge about this interneuronal population and to inspire further research on the function and malfunction of these neurons, which – functionally – seem to stand "at the top of the pyramid" of cortical interneuronal types
Reorganization of CA3 area of the mouse hippocampus after pilocarpine induced temporal lobe epilepsy with special reference to the CA3-septum pathway
10.1002/jnr.20731Journal of Neuroscience Research832318-331JNRE
- …