2 research outputs found

    Different Lengths of Diet Supplementation with 10% Flaxseed Alter the Hormonal Profile and the Follicular Fluid Fatty Acid Content of Fattening Gilts

    No full text
    The effect of 10% dietary flaxseed fed for 3 and 6 weeks on serum hormone levels of fattening gilts, the fatty acid (FA) follicular fluid (FF) composition of small and large antral follicles, and the steroidogenesis and IGF-I secretion by isolated small antral follicles and their response to regulatory hormones (LH, FSH, IGF-I) was studied using immunoassay and gas chromatography analyses. Both supplemental periods increased levels of P4 and IGF-I in blood serum. A shorter period inhibited steroidogenesis (P4, T, E2) and IGF-I secretion by small antral follicles, which was associated with decreased levels of monounsaturated FAs (MUFA) and preferred n-6 polyunsaturated FA (PUFA) metabolism. A longer period stimulated hormone secretion at elevated levels of saturated FAs (SFA) at the expense of MUFAs and PUFAs preferring the n-3 PUFA metabolism. Out of ovarian regulators, only LH and IGF-I were able to alter the secretion of steroids and IGF-I by small follicles of fattening pigs fed a basal diet. The effect of flaxseed on the secretion of follicular hormones after both supplemental periods was altered by all regulatory hormones in a dose-dependent manner. The level of SFAs and PUFAs in FF of large follicles increased with the length of flaxseed feeding, suggesting the suppression of ovulation

    A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula

    No full text
    The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen’s Egg Test—Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds
    corecore