25 research outputs found

    PLG72 Modulates Intracellular D-Serine Levels through Its Interaction with D-Amino Acid Oxidase : EFFECT ON SCHIZOPHRENIA SUSCEPTIBILITY

    Get PDF
    Human genes coding for pLG72 and d-amino acid oxidase have recently been linked to the onset of schizophrenia. pLG72 was proposed as an activator of the human FAD-containing flavoprotein d-amino acid oxidase (hDAAO). In the brain this oxidizes d-serine, a potent activator of N-methyl-d-aspartate receptor. We have investigated the mechanistic regulation of hDAAO by pLG72. Immunohistochemical analyses revealed that hDAAO and pLG72 are both expressed in astrocytes of the human cortex, where they most likely interact, considering their partial overlapping subcellular distribution and their coimmunoprecipitation. We demonstrated that the specific in vitro interaction of the two proteins yields a complex composed of 2 hDAAO homodimers and 2 pLG72 molecules. Binding of pLG72 did not affect the kinetic properties and FAD binding ability of hDAAO; instead, a time-dependent loss of hDAAO activity in the presence of an excess of pLG72 was found. The binding affects the tertiary structure of hDAAO, altering the amount of the active form. We finally demonstrated that overexpression of hDAAO in glioblastoma cells decreases the levels of d-serine, an effect that is null when pLG72 is coexpressed. These data indicate that pLG72 acts as a negative effector of hDAAO. Therefore, a decrease in the synaptic concentration of d-serine as the result of an anomalous increase in hDAAO activity related to hypoexpression of pLG72 may represent a molecular mechanism by which hDAAO and pLG72 are involved in schizophrenia susceptibility

    Alix is required for activity-dependent bulk endocytosis at brain synapses

    Get PDF
    In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activitydependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrinindependent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations

    d-Serine signalling in the brain: friend and foe

    No full text
    Neurons and glia talk to each other at synapses. Glia sense the level of synaptic activity and consequently regulate its efficacy via the release of neuromodulators. One such glia-derived modulator is d-serine, an amino acid that serves as an endogenous ligand for the strychnine-insensitive glycine-binding site of NMDA glutamate receptors. Here, we provide an overview of recent findings on the mechanisms of its synthesis, release and clearance at synapses, with an emphasis on the dichotomy of behaviour of this novel messenger in the brain. The discovery of the good and ugly faces of this gliotransmitter is an important issue of modern neuroscience that has repercussions for the treatment of brain disorders

    Gliotransmission at central glutamatergic synapses: d-serine on stage

    No full text
    Long ignored and only considered as housekeeping cells for neurons, astroglial cells in the last decade have gained increasing attention as key players of higher functions in healthy brain, but also in diseases. This revolution in our way to think the active brain culminates in the concept of a tripartite synapse, which considers glial cells and notably astrocytes as an integral dynamic partner of synapses. Glia not only listens but also talks to neurons through the release of neuroactive substances. Recently much attention has been paid to the role played by the atypical amino acid d-serine in this signalling pathway. This molecule synthesized through racemization of l-serine fulfils most criteria as a gliotransmitter and as the endogenous ligand for the strychnine-insensitive glycine binding site of the NMDA receptors. d-Serine is considered to be a permissive factor for long-term changes in synaptic plasticity and neuronal migration through activation of NMDA receptors. It is also known that disturbance of NMDA receptors activity can cause cell death. Not surprisingly, then, d-serine has also been found to promote neurons death in experimental models of ÎČ-amyloid peptide-induced neuroinflammation and of ischaemia by overactivating the NMDA receptors. Finally, in a more recent past, studies have pointed to the molecular mechanisms leading to d-serine release into and removal from the synaptic cleft

    VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses

    No full text
    Glutamate is the major excitatory transmitter in the vertebrate nervous system. To maintain synaptic efficacy, recycling synaptic vesicles (SV) are refilled with glutamate by vesicular glutamate transporters (VGLUTs). The dynamics and mechanism of glutamate uptake in intact neurons are still largely unknown. Here, we show by live-cell imaging with pH- and chloride-sensitive fluorescent probes in cultured hippocampal neurons of wild-type and VGLUT1-deficient mice that in SVs VGLUT functions as a glutamate/proton exchanger associated with a channel-like chloride conductance. After endocytosis most internalized Cl− is substituted by glutamate in an electrically, and presumably osmotically, neutral manner, and this process is driven by both the Cl− gradient itself and the proton motive force provided by the vacuolar H+-ATPase. Our results shed light on the transport mechanism of VGLUT under physiological conditions and provide a framework for how modulation of glutamate transport via Cl− and pH can change synaptic strength

    Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission.

    No full text
    D-Serine is an astrocyte-derived regulator for N-methyl-D-aspartate receptors, but the intracellular routes of its trafficking are still largely unknown. Here, we combined confocal microscopy with colocalization quantification to track the astrocytic organelles that store D-serine. We report that D-serine colocalizes with the transfected eGFP-synaptobrevin/VAMP2 and eGFP-cellubrevin/VAMP3, two v-SNAREs of the regulated secretory pathway. No significant colocalization was found with markers of the endosomal sorting and recycling system: EEA1, eGFP-endobrevin/VAMP8, eGFP-TI-VAMP/VAMP7, LAMP1, and CD63. Blockade of vesicular budding with colchicine shows that secretory vesicles import D-serine downstream to the Golgi apparatus. Finally, treatment of astrocytes with the Ca2+-ionophore A23187, glutamate agonists, or bradykinin trigger translocation of synaptobrevin/VAMP2 to the plasma membrane with a concomitant disappearance of D-serine from the regulated secretory pathway. Our results provide morphological evidence for a vesicular storage of D-serine in the regulated secretory pathway and the possible recruitment of these stores by Ca2+ mobilization to release D-serine

    Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine

    No full text
    The gliotransmitter d-serine is released upon (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are unknown. Here, by using a highly sensitive bioassay to continuously monitor extracellular d-serine levels, we have investigated the pathways used in its release. We reveal that d-serine release is inhibited by removal of extracellular calcium and augmented by increasing extracellular calcium or after treatment with the Ca(2+) ionophore A23187. Furthermore, release of the amino acid is considerably reduced after depletion of thapsigargin-sensitive intracellular Ca(2+) stores or chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,Nâ€Č,Nâ€Č-tetraacetate–acetoxymethyl ester. Interestingly, d-serine release also was markedly reduced by concanamycin A, a vacuolar-type H(+)-ATPase inhibitor, indicating a role for the vesicular proton gradient in the transmitter storage/release. In addition, agonist-evoked d-serine release was sensitive to tetanus neurotoxin. Finally, immunocytochemical and sucrose density gradient analysis revealed that a large fraction of d-serine colocalized with synaptobrevin/VAMP2, suggesting that it is stored in VAMP2-bearing vesicles. In summary, our study reveals the cellular mechanisms subserving d-serine release and highlights the importance of the glial cell exocytotic pathway in influencing CNS levels of extracellular d-serine
    corecore