243 research outputs found
The acclimative biogeochemical model of the southern North Sea
Ecosystem models often rely on heuristic descriptions of autotrophic growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled three-dimensional physical-biogeochemical model and the application of the model system to the southern North Sea (SNS) defined on a relatively high resolution (∼1.5-4.5 km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is based on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the General Estuarine Transport Model (GETM) as the hydrodynamical driver, a lower-trophic-level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter (SPM) and open ocean boundary conditions. For a simulation for the period 2000-2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system within the German Bight characterized by steep salinity; nutrient and chlorophyll (Chl) gradients, as inferred from comparisons against observation data from long-term monitoring stations; sparse in situ measurements; continuous transects; and satellites. The model also displays skill in capturing the formation of thin chlorophyll layers at the pycnocline, which is frequently observed within the stratified regions during summer. A sensitivity analysis reveals that the vertical distributions of phytoplankton concentrations estimated by the model can be qualitatively sensitive to the description of the light climate and dependence of sinking rates on the internal nutrient reserves. A non-acclimative (fixed-physiology) version of the model predicted entirely different vertical profiles, suggesting that accounting for physiological flexibility might be relevant for a consistent representation of the vertical distribution of phytoplankton biomass. Our results point to significant variability in the cellular chlorophyll-to-carbon ratio (Chl : C) across seasons and the coastal to offshore transition. Up to 3-fold-higher Chl : C at the coastal areas in comparison to those at the offshore areas contribute to the steepness of the chlorophyll gradient. The model also predicts much higher phytoplankton concentrations at the coastal areas in comparison to its non-acclimative equivalent. Hence, findings of this study provide evidence for the relevance of physiological flexibility, here reflected by spatial and seasonal variations in Chl : C, for a realistic description of biogeochemical fluxes, particularly in the environments displaying strong resource gradients. © 2017 Author(s)
Life History and Habitat of the Rare Patch-nosed Salamander (Urspelerpes brucei)
We examined the life history and habitat characteristics for the Patch-nosed Salamander, Urspelerpes brucei. Body-size measurements of individuals captured using litter bags and by hand from 2008 to 2010 indicated that the larval period lasts at least 2 y, salamanders attain reproductive maturity at or shortly after metamorphosis, and adults have very little variation in body size. Occupied streams are characterized by small size, little water, and narrow, steep-walled ravines. Within occupied streams, larval capture rate was significantly and negatively related to mean water depth, underscoring the importance of protecting headwaters. We hypothesize that the only known population of U. brucei east of the Tugaloo River was isolated from the west-bank populations by the tremendous increase in w
Maximum sinking velocities of suspended particulate matter in a coastal transition zone
Marine coastal ecosystem functioning is crucially linked to the transport and fate of suspended particulate matter (SPM). Transport of SPM is controlled by, amongst other factors, sinking velocity ws. Since the ws of cohesive SPM aggregates varies significantly with size and composition of the mineral and organic origin, ws exhibits large spatial variability along gradients of turbulence, SPM concentration (SPMC) and SPM composition. In this study, we retrieved ws for the German Bight, North Sea, by combining measured vertical turbidity profiles with simulation results for turbulent eddy diffusivity. We analyzed ws with respect to modeled prevailing dissipation rates ϵ and found that mean ws were significantly enhanced around log10(ϵ (m2 s−3)) ≈ −5.5. This ϵ region is typically found at water depths of approximately 15 to 20 m along cross-shore transects. Across this zone, SPMC declines towards the offshore waters and a change in particle composition occurs. This characterizes a transition zone with potentially enhanced vertical fluxes. Our findings contribute to the conceptual understanding of nutrient cycling in the coastal region which is as follows. Previous studies identified an estuarine circulation. Its residual landward-oriented bottom currents are loaded with SPM, particularly within the transition zone. This retains and traps fine sediments and particulate-bound nutrients in coastal waters where organic components of SPM become remineralized. Residual surface currents transport dissolved nutrients offshore, where they are again consumed by phytoplankton. Algae excrete extracellular polymeric substances which are known to mediate mineral aggregation and thus sedimentation. This probably takes place particularly in the transition zone and completes the coastal nutrient cycle. The efficiency of the transition zone for retention is thus suggested as an important mechanism that underlies the often observed nutrient gradients towards the coast.BMBF/PACEBMBF/FKZ 030634ABMBF/FKZ 03F0667AHelmholtz Society/PACESNiedersächsisches Ministerium für Wissenschaft und Kultur (MWK)Niedersächsisches Ministerium für Umwelt und Klimaschutz (MUK)Coastal Observing System for Northern and Arctic Seas (COSYNA
Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates
Nitrogen (N) and phosphorus (P) concentrations are elevated in many freshwater systems, stimulating breakdown rates of terrestrially derived plant litter; however, the relative importance of N and P in driving litter breakdown via microbial and detritivore processing are not fully understood. Here, we determined breakdown rates of two litter species, Acer rubrum (maple) and Rhododendron maximum (rhododendron), before (PRE) and during two years (YR1, YR2) of experimental N and P additions to five streams, and quantified the relative importance of hypothesized factors contributing to breakdown. Treatment streams received a gradient of P additions (low to high soluble reactive phosphorus [SRP]; ~10–85 μg/L) crossed with a gradient of N additions (high to low dissolved inorganic nitrogen [DIN]; ~472–96 μg/L) to achieve target molar N:P ratios ranging from 128 to 2. Litter breakdown rates increased above pre‐treatment levels by an average of 1.1–2.2× for maple, and 2.7–4.9× for rhododendron in YR1 and YR2. We used path analysis to compare fungal biomass, shredder biomass, litter stoichiometry (nutrient content as C:N or C:P), discharge, and streamwater temperature as predictors of breakdown rates and compared models containing streamwater N, P or N + P and litter C:N or C:P using model selection criteria. Litter breakdown rates were predicted equally with either streamwater N or P (R2 = 0.57). In models with N or P, fungal biomass, litter stoichiometry, discharge, and shredder biomass predicted breakdown rates; litter stoichiometry and fungal biomass were most important for model fit. However, N and P effects may have occurred via subtly different pathways. Litter N content increased with fungal biomass (N‐driven effects) and litter P content increased with streamwater P availability (P‐driven effects), presumably via P storage in fungal biomass. In either case, the effects of N and P through these pathways were associated with higher shredder biomass and breakdown rates. Our results suggest that N and P stimulate litter breakdown rates via mechanisms in which litter stoichiometry is an important nexus for associated microbial and detritivore effects
Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates
Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low‐to‐moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55–545 μg/L) and soluble reactive P (SRP; 4–86 μg/L) concentrations with corresponding N:P molar ratios of 2–127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d−1) and per degree‐day (dd−1), increased by up to 6× for maple and 12× for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d−1 and dd−1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd−1 were supported by N and P for both maple and rhododendron ( = 0.67 and 0.33, respectively). Residuals in the relationship between k dd−1 and N concentration were largely explained by P, but residuals for k dd−1 and P concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C : nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that microbially driven litter processing rates increase across low‐to‐moderate nutrient gradients that are now common throughout human‐modified landscapes
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
The role of socio-economic status in the decision making on diagnosis and treatment of oesophageal cancer in The Netherlands
In the United States (USA), a correlation has been demonstrated between socio-economic status (SES) of patients on the one hand, and tumour histology, stage of the disease and treatment modality of various cancer types on the other hand. It is unknown whether such correlations are also involved in patients with oesophageal cancer in The Netherlands. Between 1994 and 2003, 888 oesophageal cancer patients were included in a prospective database with findings on the diagnostic work-up and treatment of oesophageal cancer. Socio-economic status of patients was defined as the average net yearly income. Linear-by-linear association testing revealed that oesophageal adenocarcinoma was more frequently observed in patients with higher SES and squamous cell carcinoma in patients with lower SES (P=0.02). Multivariable logistic regression analysis showed no correlation between SES and staging procedures and preoperative TNM stage. The adjusted odds ratio (OR) for stent placement was 0.82 (95% CI 0.71–0.95), indicating that with an increase in SES by 1200 €, the likelihood that a stent was placed declined by 18%. Patients with a higher SES more frequently underwent resection or were treated with chemotherapy (OR: 1.15; 95% CI 1.01–1.32 and OR: 1.16; 95% CI 1.02–1.32, respectively). Socio-economic factors are involved in oesophageal cancer in The Netherlands, as patients with a higher SES are more likely to have an adenocarcinoma and patients with a lower SES a squamous cell carcinoma. Moreover, the correlations between SES and different treatment modalities suggest that both patient and doctor determinants contribute to the decision on the most optimal treatment modality in patients with oesophageal cancer
Detection of distant metastases in patients with oesophageal or gastric cardia cancer: a diagnostic decision analysis
Computed tomography (CT) is presently a standard procedure for the detection of distant metastases in patients with oesophageal or gastric cardia cancer. We aimed to determine the additional diagnostic value of alternative staging investigations. We included 569 oesophageal or gastric cardia cancer patients who had undergone CT neck/thorax/abdomen, ultrasound (US) abdomen, US neck, endoscopic ultrasonography (EUS), and/or chest X-ray for staging. Sensitivity and specificity were first determined at an organ level (results of investigations, i.e., CT, US abdomen, US neck, EUS, and chest X-ray, per organ), and then at a patient level (results for combinations of investigations), considering that the detection of distant metastases is a contraindication to surgery. For this, we compared three strategies for each organ: CT alone, CT plus another investigation if CT was negative for metastases (one-positive scenario), and CT plus another investigation if CT was positive, but requiring that both were positive for a final positive result (two-positive scenario). In addition, costs, life expectancy and quality adjusted life years (QALYs) were compared between different diagnostic strategies. CT showed sensitivities for detecting metastases in celiac lymph nodes, liver and lung of 69, 73, and 90%, respectively, which was higher than the sensitivities of US abdomen (44% for celiac lymph nodes and 65% for liver metastases), EUS (38% for celiac lymph nodes), and chest X-ray (68% for lung metastases). In contrast, US neck showed a higher sensitivity for the detection of malignant supraclavicular lymph nodes than CT (85 vs 28%). At a patient level, sensitivity for detecting distant metastases was 66% and specificity was 95% if only CT was performed. A higher sensitivity (86%) was achieved when US neck was added to CT (one-positive scenario), at the same specificity (95%). This strategy resulted in lower costs compared to CT only, at an almost similar (quality adjusted) life expectancy. Slightly higher specificities (97–99%) were achieved if liver and/or lung metastases found on CT, were confirmed by US abdomen or chest X-ray, respectively (two-positive scenario). These strategies had only slightly higher QALYs, but substantially higher costs. The combination of CT neck/thorax/abdomen and US neck was most cost-effective for the detection of metastases in patients with oesophageal or gastric cardia cancer, whereas the performance of CT only had a lower sensitivity for metastases detection and higher costs. The role of EUS seems limited, which may be due to the low number of M1b celiac lymph nodes detected in this series. It remains to be determined whether the application of positron emission tomography will further increase sensitivities and specificities of metastases detection without jeopardising costs and QALYs
Lowering of Circulating Sclerostin May Increase Risk of Atherosclerosis and Its Risk Factors: Evidence From a Genome-Wide Association Meta-Analysis Followed by Mendelian Randomization
OBJECTIVE: In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors.
METHODS: A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors.
RESULTS: We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (β = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects.
CONCLUSION: This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors
- …