18,053 research outputs found

    Collision of Domain Walls and Reheating of the Brane Universe

    Full text link
    We study a particle production at the collision of two domain walls in 5-dimensional Minkowski spacetime. This may provide the reheating mechanism of an ekpyrotic (or cyclic) brane universe, in which two BPS branes collide and evolve into a hot big bang universe. We evaluate a production rate of particles confined to the domain wall. The energy density of created particles is given as ρ20gˉ4Nb mη4\rho \approx 20 \bar{g}^4 N_b ~m_\eta^4 where gˉ\bar{g} is a coupling constant of particles to a domain-wall scalar field, NbN_b is the number of bounces at the collision and mηm_\eta is a fundamental mass scale of the domain wall. It does not depend on the width dd of the domain wall, although the typical energy scale of created particles is given by ω1/d\omega\sim 1/d. The reheating temperature is evaluated as TR0.88 gˉ Nb1/4T_{\rm R}\approx 0.88 ~ \bar{g} ~ N_b^{1/4}. In order to have the baryogenesis at the electro-weak energy scale, the fundamental mass scale is constrained as m_\eta \gsim 1.1\times 10^7 GeV for gˉ105\bar{g}\sim 10^{-5}.Comment: 10 pages, 12 figure

    New Charged Black Holes with Conformal Scalar Hair

    Full text link
    A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-Lambda system with a conformally coupled scalar field is constructed in this paper. The metric belongs to the Plebanski-Demianski family and hence its static limit has the form of the charged C-metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C-metric can be removed due to the back reaction of the scalar field providing a new kind of regular, radiative spacetime. The scalar field carries a continuous parameter proportional to the usual acceleration present in the C-metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.Comment: Published versio

    Exact Analysis of ESR Shift in the Spin-1/2 Heisenberg Antiferromagnetic Chain

    Full text link
    A systematic perturbation theory is developed for the ESR shift and is applied to the spin-1/2 Heisenberg chain. Using the Bethe ansatz technique, we exactly analyze the resonance shift in the first order of perturbative expansion with respect to an anisotropic exchange interaction. Exact result for the whole range of temperature and magnetic field, as well as asymptotic behavior in the low-temperature limit are presented. The obtained g-shift strongly depends on magnetic fields at low temperature, showing a significant deviation from the previous classical result.Comment: 4 pages, 3 figures,to be published in Phys. Rev. Let

    Gauss-Bonnet black holes with non-constant curvature horizons

    Full text link
    We investigate static and dynamical n(\ge 6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasi-local mass that satisfies the unified first law, we show that most of the properties of the quasi-local mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is non-constant. The quasi-local mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the non-zero cosmological constant, it cannot be globally stable for the positive cosmological constant.Comment: 15 pages, 1 figure; v2, discussion clarified and references added; v3, published version; v4, Eqs.(4.22)-(4.24) corrected, which do not change Eqs.(4.25)-(4.27

    Precursors and Main-bursts of Gamma Ray Bursts in a Hypernova Scenario

    Full text link
    We investigate a "hypernova" model for gamma-ray bursts (GRBs), i.e., massive C+O star model with relativistic jets. In this model, non-thermal precursors can be produced by the "first" relativistic shell ejected from the star. Main GRBs are produced behind the "first"-shell by the collisions of several relativistic shells. They become visible to distant observers after the colliding region becomes optically thin. We examine six selected conditions using relativistic hydrodynamical simulations and simple analyses. Interestingly, our simulations show that sub-relativistic (v0.8c)(v \sim 0.8c) jets from the central engine is sufficient to produce highly-relativistic (Γ>100)(\Gamma > 100) shells. We find that the relativistic shells from such a star can reproduce observed GRBs with certain conditions. Two conditions are especially important. One is the sufficiently long duration of the central engine \gsim 100 sec. The other is the existence of a dense-shell somewhere behind the "first"-shell. Under these conditions, both the existence and non-existence of precursors, and long delay between precursors and main GRBs can be explained.Comment: 8 pages, 2 figures. Accepted for publication in the Astrophysical Journal (Letters

    Melting Crystal, Quantum Torus and Toda Hierarchy

    Full text link
    Searching for the integrable structures of supersymmetric gauge theories and topological strings, we study melting crystal, which is known as random plane partition, from the viewpoint of integrable systems. We show that a series of partition functions of melting crystals gives rise to a tau function of the one-dimensional Toda hierarchy, where the models are defined by adding suitable potentials, endowed with a series of coupling constants, to the standard statistical weight. These potentials can be converted to a commutative sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable connection between random plane partition and quantum torus Lie algebra, and substantially enables to prove the statement. Based on the result, we briefly argue the integrable structures of five-dimensional N=1\mathcal{N}=1 supersymmetric gauge theories and AA-model topological strings. The aforementioned potentials correspond to gauge theory observables analogous to the Wilson loops, and thereby the partition functions are translated in the gauge theory to generating functions of their correlators. In topological strings, we particularly comment on a possibility of topology change caused by condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section is added and devoted to Conclusion and discussion, where, in particular, a possible relation with the generating function of the absolute Gromov-Witten invariants on CP^1 is commented. Two references are added. Typos are corrected. 32 pages. 4 figure

    Mirror effect induced by the dilaton field on the Hawking radiation

    Full text link
    We discuss the string creation in the near-extremal NS1 black string solution. The string creation is described by an effective field equation derived from a fundamental string action coupled to the dilaton field in a conformally invariant manner. In the non-critical string model the dilaton field causes a timelike mirror surface outside the horizon when the size of the black string is comparable to the Planck scale. Since the fundamental strings are reflected by the mirror surface, the negative energy flux does not propagate across the surface. This means that the evaporation stops just before the naked singularity of the extremal black string appears even though the surface gravity is non-zero in the extremal limit.Comment: 15 page

    Structure formation on the brane: A mimicry

    Full text link
    We show how braneworld cosmology with bulk matter can explain structure formation. In this scenario, the nonlocal corrections to the Friedmann equations supply a Weyl fluid that can dominate over matter at late times due to the energy exchange between the brane and the bulk. We demonstrate that the presence of the Weyl fluid radically changes the perturbation equations, which can take care of the fluctuations required to account for the large amount of inhomogeneities observed in the local universe. Further, we show how this Weyl fluid can mimic dark matter. We also investigate the bulk geometry responsible for the scenario.Comment: 7 pages. Matches published versio

    Creation of the universe with a stealth scalar field

    Full text link
    The stealth scalar field is a non-trivial configuration without any back-reaction to geometry, which is characteristic for non-minimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by the Hartle and Hawking's semi-classical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe adde
    corecore