22 research outputs found
In-Vitro Helix Opening of M. tuberculosis oriC by DnaA Occurs at Precise Location and Is Inhibited by IciA Like Protein
BACKGROUND: Mycobacterium tuberculosis (M.tb), the pathogen that causes tuberculosis, is capable of staying asymptomatically in a latent form, persisting for years in very low replicating state, before getting reactivated to cause active infection. It is therefore important to study M.tb chromosome replication, specifically its initiation and regulation. While the region between dnaA and dnaN gene is capable of autonomous replication, little is known about the interaction between DnaA initiator protein, oriC origin of replication sequences and their negative effectors of replication. METHODOLOGY/PRINCIPAL FINDINGS: By KMnO(4) mapping assays the sequences involved in open complex formation within oriC, mediated by M.tb DnaA protein, were mapped to position -500 to -518 with respect to the dnaN gene. Contrary to E. coli, the M.tb DnaA in the presence of non-hydrolysable analogue of ATP (ATPgammaS) was unable to participate in helix opening thereby pointing to the importance of ATP hydrolysis. Interestingly, ATPase activity in the presence of supercoiled template was higher than that observed for DnaA box alone. M.tb rRv1985c, a homologue of E.coli IciA (Inhibitor of chromosomal initiation) protein, could inhibit DnaA-mediated in-vitro helix opening by specifically binding to A+T rich region of oriC, provided the open complex formation had not initiated. rIciA could also inhibit in-vitro replication of plasmid carrying the M.tb origin of replication. CONCLUSIONS/SIGNIFICANCE: These results have a bearing on the functional role of the important regulator of M.tb chromosomal replication belonging to the LysR family of bacterial regulatory proteins in the context of latency
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes . The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix–hairpin–helix (HhH) motif and the C-terminal domain with a Cys(4) zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30−35 Å diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding
Metabolic characterization of the natural progression of chronic hepatitis B
BACKGROUND: Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored. METHODS: To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. RESULTS: Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. CONCLUSIONS: The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0318-8) contains supplementary material, which is available to authorized users
RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli
A Role for Cytosolic Isocitrate Dehydrogenase as a Negative Regulator of Glucose Signaling for Insulin Secretion in Pancreatic ß-Cells
Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α–ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the K(ATP)-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS