1,441 research outputs found
COCrIP: Compliant OmniCrawler In-pipeline Robot
This paper presents a modular in-pipeline climbing robot with a novel
compliant foldable OmniCrawler mechanism. The circular cross-section of the
OmniCrawler module enables a holonomic motion to facilitate the alignment of
the robot in the direction of bends. Additionally, the crawler mechanism
provides a fair amount of traction, even on slippery surfaces. These advantages
of crawler modules have been further supplemented by incorporating active
compliance in the module itself which helps to negotiate sharp bends in small
diameter pipes. The robot has a series of 3 such compliant foldable modules
interconnected by the links via passive joints. For the desirable pipe diameter
and curvature of the bends, the spring stiffness value for each passive joint
is determined by formulating a constrained optimization problem using the
quasi-static model of the robot. Moreover, a minimum friction coefficient value
between the module-pipe surface which can be vertically climbed by the robot
without slipping is estimated. The numerical simulation results have further
been validated by experiments on real robot prototype
Design and optimal springs stiffness estimation of a Modular OmniCrawler in-pipe climbing Robot
This paper discusses the design of a novel compliant in-pipe climbing modular
robot for small diameter pipes. The robot consists of a kinematic chain of 3
OmniCrawler modules with a link connected in between 2 adjacent modules via
compliant joints. While the tank-like crawler mechanism provides good traction
on low friction surfaces, its circular cross-section makes it holonomic. The
holonomic motion assists it to re-align in a direction to avoid obstacles
during motion as well as overcome turns with a minimal energy posture.
Additionally, the modularity enables it to negotiate T-junction without motion
singularity. The compliance is realized using 4 torsion springs incorporated in
joints joining 3 modules with 2 links. For a desirable pipe diameter (\text{\O}
75mm), the springs' stiffness values are obtained by formulating a constraint
optimization problem which has been simulated in ADAMS MSC and further
validated on a real robot prototype. In order to negotiate smooth vertical
bends and friction coefficient variations in pipes, the design was later
modified by replacing springs with series elastic actuators (SEA) at 2 of the 4
joints.Comment: arXiv admin note: text overlap with arXiv:1704.0681
- …