65 research outputs found

    Heavy Metal-Induced Oxidative Stress on Seed Germination and Seedling Development: A Critical Review

    Get PDF
    Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research

    Role of Bacterial-Fungal Interactions on Heavy Metal Phytotoxicity in Serpentine Soil

    Get PDF
    This study was conducted to understand the role of bacterial–fungal interactions on heavy metal uptake by Zea mays plants. A pot experiment was conducted for 90 days with Z. mays in serpentine soil inoculated with a Gram-negative bacterium, fungus (Aspergilllus sp.) and both microbes to determine the effects of inoculation on nickel, manganese, chromium and cobalt concentrations in plant tissue and soil. Soil nutrients and soil enzyme activities were measured to determine the effect of inoculations on soil quality. Inoculation of microorganisms increased shoot and root biomass, and the maximum biomass was in the bacterial–fungal inoculation. This could be due to the solubilisation of phosphate and production of indole acetic acid. Although the combination treatment contributed to an increase in heavy metal uptake in Z. mays plants, the lowest translocation was observed in the combination treatment. Moreover, the soil available nitrogen, available phosphorous and total organic carbon content were increased with the microbial inoculation. Similarly, the soil dehydrogenase activity was higher as a result of microbial inoculation, whereas the highest dehydrogenase activity was reported in the combination inoculation. This study confirms the synergistic effect of bacterial–fungal inoculation as a soil-quality enhancer and as a plant-growth promoter in the presence of heavy metals

    The Distribution, Natural History and the Conservation Status of Batrachostomus Moniliger (Aves: Podargidae) in Last Two Decades from Sri Lanka

    Get PDF
    The Sri Lanka frogmouth (Batrachostomus moniliger) is a small-sized nocturnal bird largely restricted to tropical lowland forests with thick undergrowth. The motionless roosting posture as well as their plumage coloration and color patterns (which resemble that of tree stems and branches) enable them to camouflage and thereby avoid predation. Through opportunistic field surveys over a 20-year period (January 1998-February 2018), we surveyed different bioclimatic regions of Sri Lanka covering 500 sites, and documented presence of Sri Lankan frogmouth in 83 of sites. In these 83 sites, we recorded 136 birds including seven nesting pairs and chicks. Our survey confirmed frogmouth presence in four floristic regions of Sri Lanka, particularly from lower elevations (11-767 m). Most sightings were made in lowland rainforests while savannah woodlands had the least number of records; no frogmouths were recorded inside anthropocentric land-cover types such as commercial-scale farmlands or plantations. According to the habitat suitability model we constructed (MaxEnt-based), much of the lowland wet zone, particularly the southwestern corner, was predicted as the most suitable areas for Sri Lankan Frogmouth while the northeastern coastal plains, and the mid-western and northwestern parts of Sri Lanka seemed least suitable. According to The Maxent model’s internal jackknife test of variable importance, temperature seasonality is the most important predictor of frogmouth’s distribution. Sri Lanka frogmouths have a high fidelity for their roosting sites as they remained in the same tree at least for a week; preferred roosting trees were medium-sized Dicot species with a dense canopy cover and variable canopy heights. These roosting sites are relatively cool, humid with little exposure to direct sunlight. Both roosting and nesting trees were relatively isolated from neighboring canopy trees, thus, the understory surrounding the roosting tree was dense. Six of the nesting sites observed were located in the lowland wet zone rainforests while the other was in savannah woodlands of the intermediate zone. These nests were positioned approximately 66% of maximum canopy height of the host tree. Nests were constructed on relatively thin branches that formed an acute angle against the main stem. These nests are shallow, circular-shaped pads. The nest interior was cushioned with cotton, parts of fishtail palm, and down feathers while the nest exterior contained pieces of lichens and tree bark. Sri Lanka Frogmouth’s home ranges appeared to be very small in nesting season, a maximum of 60 m radius area around the roosting site. Both male and female birds alternate nest-guarding duties through most of the night-time. The major threat for the frogmouth in Sri Lanka includes habitat loss due to expansion of commercial-scale agriculture and monoculture plantations, illicit forest encroachments, and clear-cutting.Keywords: Ecology, Frogmouth, Habitat modeling, Nesting, Threat

    Impacts of river regulation and other anthropogenic activities on floodplain vegetation: A case study from Sri Lanka

    Get PDF
    Since the initiation of large-scale development in late 1970s, the Mahaweli River basin in Sri Lanka has experienced significant changes. However, no comprehensive study has been undertaken so far to evaluate the impacts of river regulation on associated ecosystems including floodplains in the downstream. The present study was aimed at identifying the impacts due to both river regulation and other anthropogenic activities on inland floodplain habitats (locally known as villus) located along the final stretch of the River Mahaweli before reaching the Indian Ocean. Four villus, Handapana (HAN), Bendiya (BEN), Karapola (KAR) and Gengala (GEN), were selected for the study. HAN and BEN can be considered as highly influenced (HI) by river regulation while KAR and GEN as less influenced (LI) due to their respective locations. Due to the absence of pre- regulation vegetation data, HI villus were compared with LI villus in order to explore any potential impacts of river regulation. Vegetation was enumerated using belt transect method. To find out other on-going anthropogenic impacts on these villu ecosystems, a survey was conducted using 100 individuals living in two villages located nearby. The results revealed some significant modification in the composition and the diversity of the vegetation, most possibly due to river regulation and other on-going anthropogenic activities. However, the most notable changes were recorded in the herbaceous layer. Some native aquatic herbaceous species have been completely absent over the period of two decades since the developmental activities begun, while some exotic invasive aquatic species (Eichhornia crassipes) dominated the herbaceous layer in HI villus threatening the survival of the remaining native species. Density and richness of lianas too diminished significantly in HI villus perhaps due to changes of micro-habitat conditions as a result of river regulation and also due to over-harvesting for commercial purposes. The results suggest that these ecosystems have been altered over the years due to culmination of factors including altered flow regimes following river regulation and some on-going human influences. The present study highlights the importance of regulating such human influences on villus including fishing and extracting cane and reed in order to protect these vulnerable ecosystems for future generations. The potential of these ecosystems to develop ecotourism has also been emphasized

    Phylogenetic turnover along local environmental gradients in tropical forest communities

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg. While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species’ habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24–50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0–10.3 % and 0.4–8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved

    Wireless Power Hotspot that Charges All of Your Devices

    Get PDF
    Each year, consumers carry an increasing number of gadgets on their person: mobile phones, tablets, smartwatches, etc. As a result, users must remember to recharge each device, every day. Wireless charging promises to free users from this burden, allowing devices to remain permanently unplugged. Today's wireless charging, however, is either limited to a single device, or is highly cumbersome, requiring the user to remove all of her wearable and handheld gadgets and place them on a charging pad. This paper introduces MultiSpot, a new wireless charging technology that can charge multiple devices, even as the user is wearing them or carrying them in her pocket. A MultiSpot charger acts as an access point for wireless power. When a user enters the vicinity of the MultiSpot charger, all of her gadgets start to charge automatically. We have prototyped MultiSpot and evaluated it using off-the-shelf mobile phones, smartwatches, and tablets. Our results show that MultiSpot can charge 6 devices at distances of up to 50cm.National Science Foundation (U.S.

    Lipid components and oxidative status of selected specialty oils

    Get PDF
    Many vegetable oils are marketed as specialty oils because of their retained flavors, tastes and distinct characteristics. Specialty oil samples which were commercially produced and retailed were purchased from local superstores in Reading, UK, and Uppsala, Sweden and profiled for detailed lipid composition and oxidative status. These oil samples include: almond, hazelnut, walnut, macadamia nut, argan, avocado, grape seed, roasted sesame, rice bran, cold pressed, organic and cold pressed, warm pressed and refined rapeseed oils. The levels of PV were quite low (0.5-1.3mEq O2 /kg) but AV and Rancimat values at 100°C (except for rapeseed oils) varied considerably at (0.5-15.5) and (4.2-37.0 h) respectively. Macadamia nut oil was found to be the most stable oil followed by argan oil, while walnut oil was the least stable. Among the specialty oils, macadamia nut oil had the lowest (4%) and walnut oil had the highest (71%) level of total PUFA. The organic cold pressed rapeseed oil had considerably lower PUFA (27%) compared with other rapeseed oils (28- 35%). In all the samples, α- and γ- tocopherols were the major tocopherols; nut oils had generally lower levels. Total sterols ranged from 889 to 15,106 µg/g oil. The major sterols were β-sitosterol (61-85%) and campesterol (6-20%). Argan oil contained schottenol (35%) and spinasterol (32%). Compared with literature values, no marked differences were observed among the differently processed, organically grown or cold pressed rapeseed oils and other specialty oils in this study

    Soil-Plant Microbiome: a promising frontier for research

    Get PDF
    No abstract availabl
    corecore