131 research outputs found
Effect of sintering under CO+N2/H2 and CO2+air atmospheres on the physicochemical features of a commercial nano-YSZ
Given the need to process anodes and composites based on nano-YSZ in reducing or in air containing additional CO2 atmospheres for the fabrication of solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs), we have studied the effect of the exposure to CO+N2/H2 or CO2+air mixtures during sintering of YSZ green pellets, prepared from commercial nanopowders, on their structure, microstructure, chemical composition and their electrical properties. The reduced sample shows Raman bands at 1298 and 1605 cm−1 that are assigned to the D and G bands of carbon, respectively. The bands intensity ratio ID/IG indicates a larger content of disordered carbon. X-ray photoelectron spectroscopy (XPS) shows that C is present in the reduced samples as reduced carbon. However, the samples sintered in CO2+air present C as carbonate-type. Impedance spectroscopy reveals that the highest total conductivity is for the reduced samples in the whole range of studied temperatures. In addition, sintering in CO2+air causes a detrimental effect on the grain boundary conductivity and therefore, on the total electrical conductivity of YSZ. It can be due to the presence of impurities such as carbonates and oxidised or even, polymerised carbonaceous species located at those areas.España Ministerio de Ciencia e Innovación and cofinanced with FEDER Funds under the Grant PID2019-104118RB-C2
Heat capacity, Raman, and Brillouin scattering studies of M2O–MgO–WO3–P2O5 glasses (M=K,Rb)
The authors report the results of temperature-dependent Brillouin scattering from both transverse and longitudinal acoustic waves, heat capacity studies as well as room temperature Raman scattering studies on M2O–MgO–WO3–P2O5 glasses (M=K,Rb). These results were used to obtain information about structure and various properties of the studied glasses such as fragility, elastic moduli, ratio of photoelastic constants, and elastic anharmonicity. They have found that both glasses have similar properties but replacement of K+ ions by Rb+ ions in the glass network leads to decrease of elastic parameters and P44 photoelastic constant due to increase of fragility. Based on Brillouin spectroscopy they show that a linear correlation between longitudinal and shear elastic moduli holds over a large temperature range. This result supports the literature data that the Cauchy-type relation represents a general rule for amorphous solids. An analysis of the Boson peak revealed that the form of the frequency distribution of the excess density of states is in agreement with the Euclidean random matrix theory. The reason of the observed shift of the maximum frequency of the Boson peak when K+ ions are substituted for Rb+ ions is also briefly discussed
Temperature dependent Raman and x-ray studies of spin-ice pyrochlore and non-magnetic pyrochlore
We present here temperature-dependent Raman, x-ray diffraction and specific
heat studies between room temperature and 12 K on single crystals of spin-ice
pyrochlore compound and its non-magnetic analogue .
Raman data show a "new" band not predicted by factor group analysis of
Raman-active modes for the pyrochlore structure in , appearing
below a temperature of 110 K with a concomitant contraction of the cubic
unit cell volume as determined from the powder x-ray diffraction analysis. Low
temperature Raman experiments on O-isotope substituted
confirm the phonon origin of the "new" mode. These findings, absent in
, suggest that the room temperature cubic lattice of the
pyrochlore undergoes a "subtle" structural transformation near
. We find anomalous \textit{red-shift} of some of the phonon modes in both
the and the as the temperature decreases, which is
attributed to strong phonon-phonon anharmonic interactions.Comment: 28 pages, 9 figures (Accepted for publication in Physical Review B
Electron paramagnetic resonance study of ferroelectric phase transition and dynamic effects in a Mn²⁺ doped [NH₄][Zn(HCOO)₃] hybrid formate framework
We present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments. Spectral simulations of the CW EPR spectra are used to obtain the temperature dependence of the Mn2+ zero-field splitting, which indicates a gradual deformation of the MnO6 octahedra indicating a continuous character of the transition. The determined data allow us to extract the critical exponent of the order parameter (β = 0.12), which suggests a quasi two-dimensional ordering in [NH4][Zn(HCOO)3]. The experimental EPR results are supported by the density functional theory calculations of the zero-field splitting parameters. Relaxation time measurements of the Mn2+ centers indicate that the longitudinal relaxation is mainly driven by the optical phonons, which correspond to the vibrations of the metal–oxygen octahedra. The temperature behavior of the transverse relaxation indicates a dynamic process in the ordered ferroelectric phase
Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites
Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles
Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew
The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than ±20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purpose
Cooperative AUV Navigation using a Single Maneuvering Surface Craft
In this paper we describe the experimental implementation of an online algorithm for cooperative localization of submerged autonomous underwater vehicles (AUVs) supported by an autonomous surface craft. Maintaining accurate localization of an AUV is difficult because electronic signals, such as GPS, are highly attenuated by water. The usual solution to the problem is to utilize expensive navigation sensors to slow the rate of dead-reckoning divergence. We investigate an alternative approach that utilizes the position information of a surface vehicle to bound the error and uncertainty of the on-board position estimates of a low-cost AUV. This approach uses the Woods Hole Oceanographic Institution (WHOI) acoustic modem to exchange vehicle location estimates while simultaneously estimating inter-vehicle range. A study of the system observability is presented so as to motivate both the choice of filtering approach and surface vehicle path planning. The first contribution of this paper is to the presentation of an experiment in which an extended Kalman filter (EKF) implementation of the concept ran online on-board an OceanServer Iver2 AUV while supported by an autonomous surface vehicle moving adaptively. The second contribution of this paper is to provide a quantitative performance comparison of three estimators: particle filtering (PF), non-linear least-squares optimization (NLS), and the EKF for a mission using three autonomous surface craft (two operating in the AUV role). Our results indicate that the PF and NLS estimators outperform the EKF, with NLS providing the best performance.United States. Office of Naval Research (Grant N000140711102)United States. Office of Naval Research. Multidisciplinary University Research InitiativeSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
Coexistence of metallic and nonmetallic properties in the pyrochlore Lu2Rh2O7
Transition metal oxides of the and block have recently become the
targets of materials discovery, largely due to their strong spin-orbit coupling
that can generate exotic magnetic and electronic states. Here we report the
high pressure synthesis of LuRhO, a new cubic pyrochlore oxide
based on Rh and characterizations via thermodynamic, electrical
transport, and muon spin relaxation measurements. Magnetic susceptibility
measurements reveal a large temperature-independent Pauli paramagnetic
contribution, while heat capacity shows an enhanced Sommerfeld coefficient,
= 21.8(1) mJ/mol-Rh K. Muon spin relaxation measurements confirm
that LuRhO remains paramagnetic down to 2 K. Taken in combination,
these three measurements suggest that LuRhO is a correlated
paramagnetic metal with a Wilson ratio of . However, electric
transport measurements present a striking contradiction as the resistivity of
LuRhO is observed to monotonically increase with decreasing
temperature, indicative of a nonmetallic state. Furthermore, although the
magnitude of the resistivity is that of a semiconductor, the temperature
dependence does not obey any conventional form. Thus, we propose that
LuRhO may belong to the same novel class of non-Fermi liquids as
the nonmetallic metal FeCrAs.Comment: 11 pages, 5 figure
- …