1,175 research outputs found

    Actively stressed marginal networks

    Get PDF
    We study the effects of motor-generated stresses in disordered three dimensional fiber networks using a combination of a mean-field, effective medium theory, scaling analysis and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of non-affine strain fluctuations as a susceptibility to motor stress.Comment: 8 pages, 4 figure

    Magnetic anisotropy of vicinal (001) fcc Co films: role of crystal splitting and structure relaxation in step-decoration effect

    Full text link
    The uniaxial in-plane magnetic anisotropy (UIP-MA) constant is calculated for a single step on the (001) surface of fcc Co(NN) films. The calculations are done for both an undecorated step and the step decorated with one or more, up to 7, Cu wires. Our objective is to explain the mechanisms by which the decoration decreases the UIP-MA constant, which is the effect observed experimentally for ultrathin Co films deposited on vicinal (001) Cu surfaces and can lead to reorientation of magnetization within the film plane. Theoretical calculations performed with a realistic tight-binding model show that the step decoration changes the UIP-MA constant significantly only if the splitting between the on-site energies of various dd-orbitals is included for atoms located near the step edge. The local relaxation of atomic structure around the step is also shown to have a significant effect on the shift of the UIP-MA constant. The influence of these two relevant factors is analyzed further by examining individual contributions to the UIP-MA constant from atoms around the step. The magnitude of the obtained UIP-MA shift agrees well with experimental data. It is also found that an additional shift due to possible charge transfer between Cu and Co atoms is very small.Comment: 12 pages,9 figures, RevTeX, submitted to Physical Review B version 3: additions to content version 2: minor correction

    Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering

    Get PDF
    We demonstrate, for the first time, successful S-matrix to potential inversion for spin one projectiles with non-diagonal SlljS^j_{ll'} yielding a TRT_{\rm R} interaction. The method is a generalization of the iterative-perturbative, IP, method. We present a test case indicating the degree of uniqueness of the potential. The method is adapted, using established procedures, into direct observable to potential inversion, fitting σ\sigma, iT11{\rm i}T_{11}, T20T_{20}, T21T_{21} and T22T_{22} for d + alpha scattering over a range of energies near 10 MeV. The TRT_{\rm R} interaction which we find is very different from that proposed elsewhere, both real and imaginary parts being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure

    n-atic Order and Continuous Shape Changes of Deformable Surfaces of Genus Zero

    Full text link
    We consider in mean-field theory the continuous development below a second-order phase transition of nn-atic tangent plane order on a deformable surface of genus zero with order parameter ψ=einθ\psi = \langle e^{i n \theta} \rangle. Tangent plane order expels Gaussian curvature. In addition, the total vorticity of orientational order on a surface of genus zero is two. Thus, the ordered phase of an nn-atic on such a surface will have 2n2n vortices of strength 1/n1/n, 2n2n zeros in its order parameter, and a nonspherical equilibrium shape. Our calculations are based on a phenomenological model with a gauge-like coupling between ψ\psi and curvature, and our analysis follows closely the Abrikosov treatment of a type II superconductor just below Hc2H_{c2}.Comment: REVTEX, 12 page

    Buckling and force propagation along intracellular microtubules

    Get PDF
    Motivated by recent experiments showing the compressive buckling of microtubules in cells, we study theoretically the mechanical response of and force propagation along elastic filaments embedded in a non-linear elastic medium. We find that embedded microtubules buckle when their compressive load exceeds a critical value

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Multiple light scattering in nematic liquid crystals

    Full text link
    We present a rigorous treatment of the diffusion approximation for multiple light scattering in anisotropic random media, and apply it to director fluctuations in a nematic liquid crystal. For a typical nematic material, 5CB, we give numerical values of the diffusion constants DD_{\|} and DD_{\perp}. We also calculate the temporal autocorrelation function measured in Diffusing Wave Spectroscopy.Comment: 5 pages RevTeX, 1 postscript figure, to be published in Phys. Rev. E (Rapid Communication

    Bi-defects of Nematic Surfactant Bilayers

    Full text link
    We consider the effects of the coupling between the orientational order of the two monolayers in flat nematic bilayers. We show that the presence of a topological defect on one bilayer generates a nontrivial orientational texture on both monolayers. Therefore, one cannot consider isolated defects on one monolayer, but rather associated pairs of defects on either monolayer, which we call bi-defects. Bi-defects generally produce walls, such that the textures of the two monolayers are identical outside the walls, and different in their interior. We suggest some experimental conditions in which these structures could be observed.Comment: RevTeX, 4 pages, 3 figure

    New Results in the Analysis of the 16^{16}O+28^{28}Si Elastic Scattering by Modifying the Optical Potential

    Get PDF
    The elastic scattering of the 16^{16}O+28^{28}Si system has been analyzed with a modified potential within the framework of the optical model over a wide energy range in the laboratory system from 29.0 to 142.5 MeV. This system has been extensively studied over the years and a number of serious problems has remained unsolved: The explanation of the anomalous large angle scattering data; the out-of-phase problem between theoretical predictions and experimental data; the reproduction of the oscillatory structure near the Coulomb barrier; the consistent description of angular distributions together with the excitation functions data are just some of these problems. We propose the use of a modified potential method to explain these problems over this wide energy range. This new method consistently improves the agreement with the experimental data and achieves a major improvement on all the previous Optical model calculations for this system.Comment: 19 pages with 8 figure

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st
    corecore