11,223 research outputs found
Development of a novel metastable composite material
The development of a new family of mouldable metastable composite materials has been demonstrated. Their special quality is derived from the ability to maintain the matrix as a supercooled liquid or gel whose solidification can be triggered mechanically, as desired, by a user. This article describes some aspects of the development work. In particular, the following are explained: the choice of matrix material; the use of additives to enhance the properties of the matrix; and the selection of reinforcement fibre. As part of the work, some mechanical testing was performed on several variations of a matrix-fibre pair and, to demonstrate the potential of such materials, some comparisons were made with a possible competitor material, a glass-reinforced urethane. It was shown that the metastable material could be formulated to provide mechanical properties that would make it suitable for applications such as orthopaedic casting, splinting and body armour, and in items of sports equipment, these being areas where its mouldability could be particularly desirable
A computational method for the coupled solution of reactionâdiffusion equations on evolving domains and manifolds: application to a model of cell migration and chemotaxis
In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulkâsurface reactionâdiffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulkâsurface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane
Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts.
Pancreatic cancer is a complex disease, in need of new therapeutic approaches. In this study, we explored the effect and mechanism of action of epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, alone and in combination with current chemotherapeutics on pancreatic cancer cell growth, focusing on glycolysis metabolism. Moreover, we investigated whether EGCG's effect is dependent on its ability to induce reactive oxygen species (ROS). EGCG reduced pancreatic cancer cell growth in a concentration-dependent manner and the growth inhibition effect was further enhanced under glucose deprivation conditions. Mechanistically, EGCG induced ROS levels concentration-dependently. EGCG affected glycolysis by suppressing the extracellular acidification rate through the reduction of the activity and levels of the glycolytic enzymes phosphofructokinase and pyruvate kinase. Cotreatment with catalase abrogated EGCG's effect on phosphofructokinase and pyruvate kinase. Furthermore, EGCG sensitized gemcitabine to inhibit pancreatic cancer cell growth in vitro and in vivo. EGCG and gemcitabine, given alone, reduced pancreatic tumor xenograft growth by 40% and 52%, respectively, whereas the EGCG/gemcitabine combination reduced tumor growth by 67%. EGCG enhanced gemcitabine's effect on apoptosis, cell proliferation, cell cycle and further suppressed phosphofructokinase and pyruvate kinase levels. In conclusion, EGCG is a strong combination partner of gemcitabine reducing pancreatic cancer cell growth by suppressing glycolysis
Morell Mackenzieâs contribution to the description of spasmodic dysphonia
Objectives: Since the middle of the 20th century most discussions of Spasmodic Dysphonia reference a paper by Ludwig Traube published in1871 as the first historical citation, crediting him with priority for this clinical syndrome. However, our recent research has determined that the original observation by Traube was published in 1864 and does not in fact describe what is currently recognized as SD. It appears that many clinics throughout Europe and North America were investigating and publishing observations on a range of voice disorders..
Methods: The wider context of work on laryngeal disorders in the 1860s-1870s is considered. One of Traubeâs contemporaries, Morell Mackenzie made significant contributions to the understanding of laryngeal movement disorder and its consequences for the voice. These will be examined to gain a clearer focus on the characterization of this disorder.
Results: The clinical descriptions published by Morrell Mackenzie in the 1860s provide details which conform quite closely to our current day understanding of SD.
Conclusions: The citation of Traubeâs âhystericalâ patient links to mid-20th century views of the functional nature of SD and the utility of psychiatric treatment. The description presented by Mackenzie is consistent with current views of SD as a movement disorder
Development of a contra-rotating tidal current turbine and analysis of performance
A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials
Recommended from our members
Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial-Mesenchymal Transition: Enhanced Efficacy when Combined with Gemcitabine.
Most pancreatic cancers are usually diagnosed at an advanced stage when they have already metastasized. Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has been shown to reduce pancreatic cancer growth, but its effect on metastasis remains elusive. This study evaluated the capacity of EGCG to inhibit pancreatic cancer cell migration and invasion and the underlying mechanisms. EGCG reduced pancreatic cancer cell growth, migration, and invasion in vitro and in vivo. EGCG prevented "Cadherin switch" and decreased the expression level of TCF8/ZEB1, ÎČ-Catenin, and Vimentin. Mechanistically, EGCG inhibited the Akt pathway in a time-dependent manner, by suppressing IGFR phosphorylation and inducing Akt degradation. Co-treatment with catalase or N-Acetyl-L-cysteine did not abrogate EGCG's effect on the Akt pathway or cell growth. Moreover, EGCG synergized with gemcitabine to suppress pancreatic cancer cell growth, migration, and invasion, through modulating epithelial-mesenchymal transition markers and inhibiting Akt pathway. In summary, EGCG may prove beneficial to improve gemcitabine sensitivity in inhibiting pancreatic cancer cell migration and invasion, to some extent through the inhibition of Akt pathway and epithelial-mesenchymal transition
QCD on Coarse Lattices
We show that the perturbatively-improved gluon action for QCD, once it is
tadpole-improved, gives accurate results even with lattice spacings as large as
0.4~fm. {\em No\/} tuning of the couplings is required. Using this action and
lattice spacing, we obtain a static potential that is rotationally invariant to
within a few percent, the spin-averaged charmonium spectrum accurate to within
30--40~MeV, and scaling to within 5--10\%. We demonstrate that simulations on
coarse lattices are several orders of magnitude less costly than simulations
using current methods.Comment: 4 page
What is the 'problem' that outreach work seeks to address and how might it be tackled? Seeking theory in a primary health prevention programme
<b>Background</b> Preventive approaches to health are disproportionately accessed by the more affluent and recent health improvement policy advocates the use of targeted preventive primary care to reduce risk factors in poorer individuals and communities. Outreach has become part of the health service response. Outreach has a long history of engaging those who do not otherwise access services. It has, however, been described as eclectic in its purpose, clientele and mode of practice; its effectiveness is unproven. Using a primary prevention programme in the UK as a case, this paper addresses two research questions: what are the perceived problems of non-engagement that outreach aims to address; and, what specific mechanisms of outreach are hypothesised to tackle these.<p></p>
<b>Methods</b> Drawing on a wider programme evaluation, the study undertook qualitative interviews with strategically selected health-care professionals. The analysis was thematically guided by the concept of 'candidacy' which theorises the dynamic process through which services and individuals negotiate appropriate service use.<p></p>
<b>Results</b> The study identified seven types of engagement 'problem' and corresponding solutions. These 'problems' lie on a continuum of complexity in terms of the challenges they present to primary care. Reasons for non-engagement are congruent with the concept of 'candidacy' but point to ways in which it can be expanded.<p></p>
<b>Conclusions</b> The paper draws conclusions about the role of outreach in contributing to the implementation of inequalities focused primary prevention and identifies further research needed in the theoretical development of both outreach as an approach and candidacy as a conceptual framework
Minor tactics of the chalk stream and kindred studies
https://scholars.unh.edu/angling/1005/thumbnail.jp
Precision lattice QCD calculations and predictions of fundamental physics in heavy quark systems
I describe the recent success in performing accurate calculations of the
effects of the strong force on particles containing bottom and charm quarks.
Since quarks are never seen in isolation, and so cannot be studied directly,
numerical simulations are key to understanding the properties of these
particles and extracting information about the quarks. The results have direct
impact on the worldwide experimental programme that is aiming to determine the
parameters of the Standard Model of particle physics precisely and thereby
uncover or constrain the possibilities for physics beyond the Standard Model.
The numerical simulation of the strong force is a huge computational task and
the recent success is the result of international collaboration in developing
techniques that are fast enough to do the calculations on powerful
supercomputers.Comment: Invited talk at SCIDAC 2006, Denver, June 2006. 15 page
- âŠ