123 research outputs found
Injection and capture of antiprotons in a Penning–Malmberg trap using a drift tube accelerator and degrader foil
The Antiproton Decelerator (AD) at CERN provides antiproton bunches with a kinetic energy of 5.3 MeV. The Extra-Low ENergy Antiproton ring at CERN, commissioned at the AD in 2018, now supplies a bunch of electron-cooled antiprotons at a fixed energy of 100 keV. The MUSASHI antiproton trap was upgraded by replacing the radio-frequency quadrupole decelerator with a pulsed drift tube to re-accelerate antiprotons and optimize the injection energy into the degrader foils. By increasing the beam energy to 119 keV, a cooled antiproton accumulation efficiency of (26±6)% was achieved
SDR, EVC, and SDREVC: Limitations and Extensions
Methods for reducing the radius, temperature and space charge of a non-neutral plasma are usually reported for conditions which approximate an ideal Penning Malmberg trap. Here, we show that (i) similar methods are still effective under surprisingly adverse circumstances: we perform strong drive regime (SDR) compression and SDREVC in a strong magnetic mirror field using only 3 out of 4 rotating wall petals. In addition, we demonstrate (ii) an alternative to SDREVC, using e-kick instead of evaporative cooling (EVC) and (iii) an upper limit for how much plasma can be cooled to T < 20 K using EVC. This limit depends on the space charge, not on the number of particles or the plasma density
Slow positron production and storage for the ASACUSA-Cusp experiment
The ASACUSA (atomic spectroscopy and collisions using slow antiprotons) Cusp experiment requires the production of dense positron plasmas with a high repetition rate to produce a beam of antihydrogen. In this work, details of the positron production apparatus used for the first observation of the antihydrogen beam, and subsequent measurements, are described in detail. This apparatus replaced the previous compact trap design resulting in an improvement in the positron accumulation rate by a factor of 52 +/- 3
Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
Salmonelose humana e animal em Araraquara, S. Paulo: prevalência de Shigella em casos humanos
Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio
Carl August Westerblad, Baro et ses dérivés dans les langues romanes. Thèse pour le Doctorat
Kornmesser, Ernst: Die Französischen Ortsnamen germanischer Abkunft. I. Teil. Die Ortgattungsnamen
- …
