253 research outputs found

    A new approach for the limit to tree height using a liquid nanolayer model

    Full text link
    Liquids in contact with solids are submitted to intermolecular forces inferring density gradients at the walls. The van der Waals forces make liquid heterogeneous, the stress tensor is not any more spherical as in homogeneous bulks and it is possible to obtain stable thin liquid films wetting vertical walls up to altitudes that incompressible fluid models are not forecasting. Application to micro tubes of xylem enables to understand why the ascent of sap is possible for very high trees like sequoias or giant eucalyptus.Comment: In the conclusion is a complementary comment to the Continuum Mechanics and Thermodynamics paper. 21 pages, 4 figures. Continuum Mechanics and Thermodynamics 20, 5 (2008) to appea

    Tortricid Moths Reared from the Invasive Weed Mexican Palo Verde, Parkinsonia aculeata, with Comments on their Host Specificity, Biology, Geographic Distribution, and Systematics

    Get PDF
    As part of efforts to identify native herbivores of Mexican palo verde, Parkinsonia aculeata L. (Leguminosae: Caesalpinioideae), as potential biological control agents against this invasive weed in Australia, ten species of Tortricidae (Lepidoptera) were reared from Guatemala, Mexico, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Platynota rostrana (Walker), Platynota helianthes (Meyrick), Platynota stultana Walsingham (all Tortricinae: Sparganothini), Rudenia leguminana (Busck), Cochylis sp. (both Tortricinae: Cochylini), Ofatulena duodecemstriata (Walsingham), O. luminosa Heinrich, Ofatulena sp. (all Olethreutinae: Grapholitini), and Crocidosema lantana Busck (Olethreutinae: Eucosmini). Significant geographic range extensions are provided for O. duodecemstriata and R. leguminana. These are the first documented records of P. aculeata as a host plant for all but O. luminosa. The four species of Sparganothini are polyphagous; in contrast, the two Cochylini and three Grapholitini likely are specialists on Leguminosae. Ofatulena luminosa is possibly host specific on P. aculeata. Host trials with Rudenia leguminana also provide some evidence of specificity, in contrast to historical rearing records. To examine the possibility that R. leguminana is a complex of species, two data sets of molecular markers were examined: (1) a combined data set of two mitochondrial markers (a 781-basepair region of cytochrome c oxidase I (COI) and a 685-basepair region of cytochrome c oxidase II) and one nuclear marker (a 531-basepair region of the 28S domain 2); and (2) the 650-basepair “barcode” region of COI. Analyses of both data sets strongly suggest that individuals examined in this study belong to more than one species

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    The FuturICT education accelerator

    Get PDF
    Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year ‘man-on-the-moon’ project is proposed in which FuturICT’s unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a ‘wind tunnel’ for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT

    The FuturICT education accelerator

    Get PDF
    Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year ‘man-on-the-moon’ project is proposed in which FuturICT’s unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a ‘wind tunnel’ for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens
    • 

    corecore