67 research outputs found

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    Get PDF
    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents

    Clinical Predictors of Immune Reconstitution following Combination Antiretroviral Therapy in Patients from the Australian HIV Observational Database

    Get PDF
    A small but significant number of patients do not achieve CD4 T-cell counts >500 cells/µl despite years of suppressive cART. These patients remain at risk of AIDS and non-AIDS defining illnesses. The aim of this study was to identify clinical factors associated with CD4 T-cell recovery following long-term cART.Patients with the following inclusion criteria were selected from the Australian HIV Observational Database (AHOD): cART as their first regimen initiated at CD4 T-cell count <500 cells/µl, HIV RNA<500 copies/ml after 6 months of cART and sustained for at least 12 months. The Cox proportional hazards model was used to identify determinants associated with time to achieve CD4 T-cell counts >500 cells/µl and >200 cells/µl.501 patients were eligible for inclusion from AHOD (n = 2853). The median (IQR) age and baseline CD4 T-cell counts were 39 (32-47) years and 236 (130-350) cells/µl, respectively. A major strength of this study is the long follow-up duration, median (IQR) = 6.5(3-10) years. Most patients (80%) achieved CD4 T-cell counts >500 cells/µl, but in 8%, this took >5 years. Among the patients who failed to reach a CD4 T-cell count >500 cells/µl, 16% received cART for >10 years. In a multivariate analysis, faster time to achieve a CD4 T-cell count >500 cells/µl was associated with higher baseline CD4 T-cell counts (p<0.001), younger age (p = 0.019) and treatment initiation with a protease inhibitor (PI)-based regimen (vs. non-nucleoside reverse transcriptase inhibitor, NNRTI; p = 0.043). Factors associated with achieving CD4 T-cell counts >200 cells/µl included higher baseline CD4 T-cell count (p<0.001), not having a prior AIDS-defining illness (p = 0.018) and higher baseline HIV RNA (p<0.001).The time taken to achieve a CD4 T-cell count >500 cells/µl despite long-term cART is prolonged in a subset of patients in AHOD. Starting cART early with a PI-based regimen (vs. NNRTI-based regimen) is associated with more rapid recovery of a CD4 T-cell count >500 cells/µl

    European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases.

    Get PDF
    Genetic testing has advanced significantly since the publication of the 2011 HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies.1 In addition to single-gene testing, there is now the ability to perform whole-exome sequencing (WES) and whole-genome sequencing (WGS). There is growing appreciation of oligogenic disorders,2,3 the role of modifier genes,2 and the use of genetic testing for risk stratification, even in common cardiac diseases such as coronary artery disease or atrial fibrillation (AFib), including a proposal for a score awaiting validation.4 This document reviews the state of genetic testing at the present time, and addresses the questions of what tests to perform and when to perform them. It should be noted that, as articulated in a 1999 Task Force Document by the European Society of Cardiology (ESC) on the legal value of medical guidelines,5 ‘The guidelines from an international organization, such as the ESC, have no specific legal territory and have no legally enforcing character. Nonetheless, in so far as they represent the state-of-the-art, they may be used as indicating deviation from evidence-based medicine in cases of questioned liability’. In the case of potentially lethal and treatable conditions such as catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS), it is the responsibility of the physician, preferably in conjunction with an expert genetics team, to communicate to the patient/family the critical importance of family screening, whether this be facilitated by cascade genetic testing or by broader clinical family screenin

    Immunological Mechanism of Action and Clinical Profile of Disease-Modifying Treatments in Multiple Sclerosis

    Get PDF

    Genetics of Multiple Sclerosis

    Full text link
    corecore