5,070 research outputs found

    1.4-GHz observations of extended giant radio galaxies

    Full text link
    This paper presents 1.4-GHz radio continuum observations of 15 very extended radio galaxies. These sources are so large that most interferometers lose partly their structure and total flux density. Therefore, single-dish detections are required to fill in the central (u,v) gap of interferometric data and obtain reliable spectral index patterns across the structures, and thus also an integrated radio continuum spectrum. We have obtained such 1.4-GHz maps with the 100-m Effelsberg telescope and combined them with the corresponding maps available from the NVSS. The aggregated data allow us to produce high-quality images, which can be used to obtain physical parameters of the mapped sources. The combined images reveal in many cases extended low surface-brightness cocoons.Comment: 39 pages, 19 figures, 3 tables. Published in Ac

    Large-Scale Radio Structure in the Universe: Giant Radio Galaxies

    Full text link
    Giant radio galaxies (GRGs), with linear sizes larger than 1 Mpc (H0=50 km/s/Mpc), represent the biggest single objects in the Universe. GRGs are rare among the entire population of radio galaxies (RGs) and their physical evolution is not well understood though for many years they have been of special interest for several reasons. The lobes of radio sources can compress cold gas clumps and trigger star or even dwarf galaxy formation, they can also transport gas from a host galaxy to large distances and seed the IGM with magnetic fields. Since GRGs have about 10 to 100 times larger sizes than normal RGs, their influence on the ambient medium is correspondingly wider and is pronounced on scales comparable to those of clusters of galaxies or larger. Therefore `giants' could play an important role in the process of large-scale structure formation in the Universe. Recently, thanks to the new all sky radio surveys, significant progress in searching for new GRGs has been made.Comment: To appear in Multiwavelength AGN Surveys, ed. R. Maiolino and R. Mujica, Singapore: World Scientific, 2004, 2 page

    Multi-Frequency Study of the B3-VLA Sample II. The Database

    Full text link
    We present total flux densities of 1049 radio sources in the frequency range from 151 MHz to 10.6 GHz. These sources belong to the B3-VLA sample, which is complete down to 100 mJy at 408 MHz. The data constitute a homogeneous spectral database for a large sample of radio sources, 50 times fainter than the 3C catalogue, and will be used to perform a spectral ageing analysis, which is one of the critical points in understanding the physics and evolution of extragalactic radio sources.Comment: 14 pages, 3 figures, accepted for publication in Astronomy & Astrophysics Supplement Series, gzipped postscript file also available at http://multivac.jb.man.ac.uk:8000/ceres/papers/papers.html or http://gladia.astro.rug.nl:8000/ceres/papers/papers.htm

    Signatures of restarted activity in core-dominated, triple radio sources selected from the FIRST survey

    Full text link
    Signatures of the re-occurrence of activity in radio-loud AGNs, indicated either by the so-called double-double or X-shaped structures, have been observed in a number of radio sources. All such objects known to date have linear sizes of the order of a megaparsec. A number of the sources that are appreciably more compact than this, but that exhibit hints of a past phase of activity, were found in the VLA FIRST survey. Their structures show symmetric relic lobes straddling relatively bright, unresolved cores. Observations of the cores of 15 such structures with MERLIN at 5 GHz have shown that four of them are doubles or core-jets on the subarcsecond scale. Misalignments of \Delta PA \ga 30 degr. between the axis of the inner structure and the line connecting the fitted maxima of the arcminute-scale relic lobes are clearly visible in three of the four sources. From these results, we can infer that a rapid repositioning of the central engine in each of these three radio sources is the most plausible interpretation of the observed morphology and that a merger is most likely the original cause of such a repositioning. In the case of TXS 1033+026, the optical image extracted from the SDSS archives clearly suggests that two objects separated by only 2.7 kpc (projected onto the sky plane) are indeed merging. The inner parts of TXS 0818+214 and TXS 1312+563 could be interpreted as double-lobed, and consequently, these sources could be of the double-double type; but further multifrequency observations are necessary to provide support for such an interpretation.Comment: 9 pages, 5 figures, matches the version printed in Astronomy & Astrophysics, very minor correction of Table

    In-Situ Particle Acceleration in Extragalactic Radio Hot Spots: Observations Meet Expectations

    Full text link
    We discuss, in terms of particle acceleration, the results from optical VLT observations of hot spots associated with radio galaxies. On the basis of observational and theoretical grounds, it is shown that: 1. relatively low radio-radio power hot spots are the optimum candidates for being detected at optical waves. This is supported by an unprecedented optical detection rate of 70% out of a sample of low radio power hot spots. 2. the shape of the synchrotron spectrum of hot spots is mainly determined by the strength of the magnetic field in the region. In particular, the break frequency, related to the age of the oldest electrons in the hot spots, is found to increase with decreasing synchrotron power and magnetic field strength. Both observational results are in agreement with an in-situ particle acceleration scenario.Comment: 5 pages, TeX (or Latex, etc), 4 figures, to appear in MNRAS Letter, Updated reference

    Factorizing Numbers with the Gauss Sum Technique: NMR Implementations

    Get PDF
    Several physics-based algorithms for factorizing large number were recently published. A notable recent one by Schleich et al. uses Gauss sums for distinguishing between factors and non-factors. We demonstrate two NMR techniques that evaluate Gauss sums and thus implement their algorithm. The first one is based on differential excitation of a single spin magnetization by a cascade of RF pulses. The second method is based on spatial averaging and selective refocusing of magnetization for Gauss sums corresponding to factors. All factors of 16637 and 52882363 are successfully obtained.Comment: 4 pages, 4 figures; Abstract and Conclusion are slightly modified. References added and formatted with Bibte

    Deriving AGN properties from radio CP and LP

    Full text link
    We report multi-frequency circular polarization measurements for the radio source 0056-00 taken at the Effelsberg 100-m radiotelescope. The data reduction is based on a new calibration procedure that allows the contemporary measurement of the four Stokes parameters with single-dish radiotelescopesComment: 2 pages, Proceeding of "IAU Symposium No.259. Cosmic Magnetic Fields from planets, to stars and galaxies

    ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445

    Get PDF
    We present Atacama Large Millimeter Array (ALMA) polarization observations at 97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot structure is dominated by two bright components enshrouded by diffuse emission. Both components show fractional polarization between 30 and 40 per cent, suggesting the presence of shocks. The polarized emission of the western component has a displacement of about 0.5 kpc outward with respect to the total intensity emission, and may trace the surface of a front shock. Strong polarization is observed in a thin strip marking the ridge of the hot spot structure visible from radio to optical. No significant polarization is detected in the diffuse emission between the main components, suggesting a highly disordered magnetic field likely produced by turbulence and instabilities in the downstream region that may be at the origin of the extended optical emission observed in this hot spot. The polarization properties support a scenario in which a combination of both multiple and intermittent shock fronts due to jet dithering, and spatially distributed stochastic second-order Fermi acceleration processes are present in the hot spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette
    corecore