125 research outputs found

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    High connectivity among locally adapted populations of a marine fish (Menidia menidia)

    Get PDF
    Author Posting. Β© Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 91 (2010): 3526–3537, doi:10.1890/09-0548.1.Patterns of connectivity are important in understanding the geographic scale of local adaptation in marine populations. While natural selection can lead to local adaptation, high connectivity can diminish the potential for such adaptation to occur. Connectivity, defined as the exchange of individuals among subpopulations, is presumed to be significant in most marine species due to life histories that include widely dispersive stages. However, evidence of local adaptation in marine species, such the Atlantic silverside, Menidia menidia, raises questions concerning the degree of connectivity. We examined geochemical signatures in the otoliths, or ear bones, of adult Atlantic silversides collected in 11 locations along the northeastern coast of the United States from New Jersey to Maine in 2004 and eight locations in 2005 using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio monitoring mass spectrometry (irm-MS). These signatures were then compared to baseline signatures of juvenile fish of known origin to determine natal origin of these adult fish. We then estimated migration distances and the degree of mixing from these data. In both years, fish generally had the highest probability of originating from the same location in which they were captured (0.01–0.80), but evidence of mixing throughout the sample area was present. Furthermore, adult M. menidia exhibit highly dispersive behavior with some fish migrating over 700 km. The probability of adult fish returning to natal areas differed between years, with the probability being, on average, 0.2 higher in the second year. These findings demonstrate that marine species with largely open populations are capable of local adaptation despite apparently high gene flow.This work was funded by the National Science Foundation (grant OCE-0425830 to D. O. Conover and grant OCE- 0134998 to S. R. Thorrold) and the New York State Department of Environmental Conservation

    Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand

    Get PDF
    Introduction Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. Aims To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. Results Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. Conclusions 1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes

    Physical characterixation and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting

    Get PDF
    An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 ΞΌm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed

    Vaccine-Induced Immunity in Baboons by Using DNA and Replication-Incompetent Adenovirus Type 5 Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    Get PDF
    This is the published version. Copyright 2003 American Society for Microbiology.The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8+-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed

    Bone cancer pain: The effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis

    Get PDF
    Patients with metastatic breast, lung or prostate cancer frequently have significant bone cancer pain. In the present report we address, in a single in vivo mouse model, the effects the bisphosphonate alendronate has on bone cancer pain, bone remodeling and tumor growth and necrosis. Following injection and confinement of green fluorescent protein-transfected murine osteolytic tumor cells into the marrow space of the femur of male C3H/HeJ mice, alendronate was administered chronically from the time the tumor was established until the bone cancer pain became severe. Alendronate therapy reduced ongoing and movement-evoked bone cancer pain, bone destruction and the destruction of sensory nerve fibers that innervate the bone. Whereas, alendronate treatment did not change viable tumor burden, both tumor growth and tumor necrosis increased. These data emphasize that it is essential to utilize a model where pain, skeletal remodeling and tumor growth can be simultaneously assessed, as each of these can significantly impact patient quality of life and survival.Peer reviewe

    Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2

    Get PDF
    More than half of all chronic cancer pain arises from metastases to bone, and bone cancer pain is one of the most difficult of all persistent pain states to fully control. Several tumor types including sarcomas and breast, prostate, and lung carcinomas grow in or preferentially metastasize to the skeleton where they proliferate, and induce significant bone remodeling, bone destruction, and cancer pain. Many of these tumors express the isoenzyme cycloxygenase-2 (COX-2), which is involved in the synthesis of prostaglandins. To begin to define the role COX-2 plays in driving bone cancer pain, we used an in vivo model where murine osteolytic 2472 sarcoma cells were injected and confined to the intramedullary space of the femur in male C3HHeJ mice. After tumor implantation, mice develop ongoing and movement-evoked bone cancer pain-related behaviors, extensive tumor-induced bone resorption, infiltration of the marrow space by tumor cells, and stereotypic neurochemical alterations in the spinal cord reflective of a persistent pain state. Thus, after injection of tumor cells, bone destruction is first evident at day 6, and pain-related behaviors are maximal at day 14. A selective COX-2 inhibitor was administered either acutely [NS398; 100 mg/kg, i.p.] on day 14 or chronically in chow {MF. tricyclic; 0.015%, p.o.} from day 6 to day 14 after tumor implantation. Acute administration of a selective COX-2 inhibitor attenuated both ongoing and movement-evoked bone cancer pain, whereas chronic inhibition of COX-2 significantly reduced ongoing and movement-evoked pain behaviors, and reduced tumor burden, osteoclastogenesis, and bone destruction by >50%. The present results suggest that chronic administration of a COX-2 inhibitor blocks prostaglandin synthesis at multiple sites, and may have significant clinical utility in the management of bone cancer and bone cancer pain.Supported by NIH Grants from the National Institute of Neurologic Disorders and Stoke (NS23970), the National Institute for Drug Abuse (DA11986), National Institute of Dental and Craniofacial Research Dentist Scientist Award (DSA) DE00270, Training Grant DE07288, and a Merit Review from the Veterans Administration.Peer reviewe

    Effects of ranolazine on right ventricular function, fluid dynamics, and metabolism in patients with precapillary pulmonary hypertension: insights from a longitudinal, randomized, double-blinded, placebo controlled, multicenter study

    Get PDF
    IntroductionRight ventricular (RV) function is a major determinant of outcome in patients with precapillary pulmonary hypertension (PH). We studied the effect of ranolazine on RV function over 6 months using multi-modality imaging and biochemical markers in patients with precapillary PH (groups I, III, and IV) and RV dysfunction [CMR imaging ejection fraction (EF) < 45%] in a longitudinal, randomized, double-blinded, placebo-controlled, multicenter study of ranolazine treatment.MethodsEnrolled patients were assessed using cardiac magnetic resonance (CMR) imaging, 11C-acetate and 18-F-FDG positron emission tomography (PET), and plasma metabolomic profiling, at baseline and at the end of treatment.ResultsTwenty-two patients were enrolled, and 15 patients completed all follow-up studies with 9 in the ranolazine arm and 6 in the placebo arm. RVEF and RV/Left ventricle (LV) mean glucose uptake were significantly improved after 6 months of treatment in the ranolazine arm. Metabolomic changes in aromatic amino acid metabolism, redox homeostasis, and bile acid metabolism were observed after ranolazine treatment, and several changes significantly correlated with changes in PET and CMR-derived fluid dynamic measurements.DiscussionRanolazine may improve RV function by altering RV metabolism in patients with precapillary PH. Larger studies are needed to confirm the beneficial effects of ranolazine

    C4b Binding Protein Binds to CD154 Preventing CD40 Mediated Cholangiocyte Apoptosis: A Novel Link between Complement and Epithelial Cell Survival

    Get PDF
    Activation of CD40 on hepatocytes and cholangiocytes is critical for amplifying Fas-mediated apoptosis in the human liver. C4b-Binding Protein (C4BP) has been reported to act as a potential surrogate ligand for CD40, suggesting that it could be involved in modulating liver epithelial cell survival. Using surface plasmon resonance (BiaCore) analysis supported by gel filtration we have shown that C4BP does not bind CD40, but it forms stable high molecular weight complexes with soluble CD40 ligand (sCD154). These C4BP/sCD154 complexes bound efficiently to immobilised CD40, but when applied to cholangiocytes they failed to induce apoptosis or proliferation or to activate NFkB, AP-1 or STAT 3, which are activated by sCD154 alone. Thus C4BP can modulate CD40/sCD154 interactions by presenting a high molecular weight multimeric sCD154/C4BP complex that suppresses critical intracellular signalling pathways, permitting cell survival without inducing proliferation. Immunohistochemistry demonstrated co-localisation and enhanced expression of C4BP and CD40 in human liver cancers. These findings suggest a novel pathway whereby components of the complement system and TNF ligands and receptors might be involved in modulating epithelial cell survival in chronic inflammation and malignant disease

    Identification of the CRE-1 Cellulolytic Regulon in Neurospora crassa

    Get PDF
    Background: In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and b-galactosidase. Methodology/Principal Findings: Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Dcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Dcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 59-SYGGRG-39 motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Dcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion
    • …
    corecore