577 research outputs found

    Developing a preliminary recharge model of the Nile Basin to help interpret GRACE data

    Get PDF
    GRACE data provides a new and exciting opportunity to gain a direct and independent measure of water mass variation on a regional scale, but the data must be combined with hydrological modelling to indicate in which part of the water cycle the mass change has occurred. Processing GRACE data through a series of spectral filters indicates a seasonal variation to gravity mass (±0.005 mGal) thought to relate to the downstream movement of water in the catchment, and delayed storage from groundwater, following the wet season in the upper catchment. To help interpret these data a groundwater recharge model was developed for the Nile Catchment using the model ZOODRM (a distributed modelling code for calculating spatial and temporal variations in groundwater recharge). ZOODRM was an appropriate model to use for this work, due to the lower data demands of the model, relative to other groundwater models, the ability of the model to use entirely remotely-sensed input data, and the added functionality of runoff routing. Rainfall (NOAA data) and ET data were sourced from the FEWS NET African Data Dissemination Service. Geological data was sourced from the digital geology map of the world, landuse data from the USGS and the DEM data from ESRI. Initial model results indicate groundwater recharge across the basin of 0-4mma-1, with obvious considerable spatial variability. The results indicate the importance of groundwater in storing rainfall, and releasing it slowly throughout the year in different parts of the catchment. Only by modelling this process can GRACE data be reliably interpreted hydrologically. Despite only a qualitative interpretation of the GRACE data having been achieved within this preliminary study, the work has indicated that the ZOODRM model can be used with entirely remotely-sensed data, and that sufficient data exists for the Nile Basin to construct a plausible recharge model. Future work is now required to properly calibrate the model to enable closer comparison of the Nile GRACE data

    Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland

    Get PDF
    A large floodplain of the River Findhorn, northeast Scotland, was investigated using hydrogeological and hydrochemical methods (including residence time indicators) to characterise groundwater/surface-water coupling and groundwater flooding. The study demonstrated widespread stratification within the floodplain: shallow (30 mm). Persistent groundwater flooding occurs within topographical lows and also in the discharge zone where it is largely managed with a series of drains constructed in the 19th century. The significant and complex role of groundwater in floodplains, demonstrated by this study, highlights the importance of fully considering groundwater in flood management schemes

    Nondissipative Drag Conductance as a Topological Quantum Number

    Full text link
    We show in this paper that the boundary condition averaged nondissipative drag conductance of two coupled mesoscopic rings with no tunneling, evaluated in a particular many-particle eigenstate, is a topological invariant characterized by a Chern integer. Physical implications of this observation are discussed.Comment: 4 pages, no figure. Title modified and significant revision made to the text. Final version appeared in PR

    Femtosecond laser writing in the monoclinic RbPb2Cl5:Dy3+ crystal

    Get PDF
    Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW

    Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space

    Full text link
    We investigate transverse electromagnetic waves propagating in a plasma in the de Sitter space. Using the 3+1 formalism we derive the relativistic two-fluid equations to take account of the effects due to the horizon and describe the set of simultaneous linear equations for the perturbations. We use a local approximation to investigate the one-dimensional radial propagation of Alfv\'en and high frequency electromagnetic waves and solve the dispersion relation for these waves numerically.Comment: 19 pages, 12 figure

    Isothermal Plasma Wave Properties of the Schwarzschild de-Sitter Black Hole in a Veselago Medium

    Full text link
    In this paper, we study wave properties of isothermal plasma for the Schwarzschild de-Sitter black hole in a Veselago medium. We use ADM 3+1 formalism to formulate general relativistic magnetohydrodynamical (GRMHD) equations for the Schwarzschild de-Sitter spacetime in Rindler coordinates. Further, Fourier analysis of the linearly perturbed GRMHD equations for the rotating (non-magnetized and magnetized) background is taken whose determinant leads to a dispersion relation. We investigate wave properties by using graphical representation of the wave vector, the refractive index, change in refractive index, phase and group velocities. Also, the modes of wave dispersion are explored. The results indicate the existence of the Veselago medium.Comment: 24 pages, 12 figures, accepted for publication in Astrophys. Space Sci. arXiv admin note: text overlap with arXiv:1101.0884 and arxiv:1007.285

    Late Winter Biogeochemical Conditions Under Sea Ice in the Canadian High Arctic

    Get PDF
    With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2) uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W) in the Canadian High Arctic. Results show relatively low surface water (1–10 m) nitrate (<1.3 µM) and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1), total alkalinity (mean±SD=2134±11.09 µmol kg−1) and under-ice pCO2sw (mean±SD=286±17 µatm). These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season

    Skymrion lattice melting in the quantum Hall system

    Full text link
    The melting and magnetic disordering of the skyrmion lattice in the quantum Hall system at filling factor ν1\nu\approx 1 are studied. A Berezinskii-Kosterlitz-Thouless renormalization group theory is employed to describe the coupled magnetic and translational degrees of freedom. The non-trivial magnetic properties of the skyrmion system stem from the in-plane components of the non-collinear magnetization in the vicinity of skyrmions, which are described by an antiferromagnetic XY model. In a Coulomb gas formulation the `particles' are the topological defects of the XY model (vortices) and of the lattice (dislocations and disclinations). The latter frustrate the antiferromagnetic order and acquire fractional vorticity in order to minimize their energy. We find a number of melting/disordering scenarios for various lattice types. While these results do not depend on a particular model, we also consider a simple classical model for the skyrmion system. It results in a rich T=0 phase diagram. We propose that the triangular and square skyrmion lattices are generically separated by a centered rectangular phase in the quantum Hall system.Comment: 15 pages with 5 figures. Minor revisions. Important reference to M. Rao, S. Sengupta, and R. Shankar, Phys. Rev. Lett. 79, 3998 (1997) adde

    Coupling Optical and Electrical Measurements in Artificial Membranes: Lateral Diffusion of Lipids and Channel Forming Peptides in Planar Bilayers

    Get PDF
    Planar lipid bilayers (PLB) were prepared by the Montal-Mueller technique in a FRAP system designed to simultaneously measure conductivity across, and lateral diffusion of, the bilayer. In the first stage of the project the FRAP system was used to characterise the lateral dynamics of bilayer lipids with regards to phospholipid composition (headgroup, chain unsaturation etc.), presence of cholesterol and the effect of divalent cations on negatively-charged bilayers. In the second stage of the project, lateral diffusion of two fluorescently-labelled voltage-dependent pore-forming peptides (alamethicin and S4s from Shaker K(+) channel) was determined at rest and in the conducting state. This study demonstrates the feasibility of such experiments with PLBs, amenable to physical constraints, and thus offers new opportunities for systematic studies of structure-function relationships in membrane-associating molecules
    corecore