88 research outputs found
Time of arrival difference estimation for narrow band high frequency echolocation clicks
Funding: Scottish Government as part of the Marine Mammal Scientific Research Program MMSS/002/15; Natural Environment Research Council, Grant No. NE/R014639/1.Algorithms are presented for the accurate time of arrival difference estimation of high frequency narrow band echolocation clicks from Harbor Porpoise. These clicks typically have a center frequency of around 130 kHz (wavelength ∼1.2 cm) and duration of 10 dB these errors can be reduced by over two orders of magnitude through a combination of up-sampling the data and parabolic interpolation of peaks in the cross-correlation functions.Publisher PDFPeer reviewe
Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures
This research was funded through a research grant from the Scottish Government as part of the Marine Mammal Scientific Support Program MMSS/002/15.A wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.Publisher PDFPeer reviewe
Hunting bats adjust their echolocation to receive weak prey echoes for clutter reduction
This study was funded by the Carlsberg Semper Ardens grant to P.T.M. and by the Emmy Noether program of the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation, grant no. 241711556) to H.R.G. All experiments were carried out under the following licenses: 721/12.06.2017, 180/07.08.2018, and 795/17.05.2019.How animals extract information from their surroundings to guide motor patterns is central to their survival. Here, we use echo-recording tags to show how wild hunting bats adjust their sensory strategies to their prey and natural environment. When searching, bats maximize the chances of detecting small prey by using large sensory volumes. During prey pursuit, they trade spatial for temporal information by reducing sensory volumes while increasing update rate and redundancy of their sensory scenes. These adjustments lead to very weak prey echoes that bats protect from interference by segregating prey sensory streams from the background using a combination of fast-acting sensory and motor strategies. Counterintuitively, these weak sensory scenes allow bats to be efficient hunters close to background clutter broadening the niches available to hunt for insects.Publisher PDFPeer reviewe
Harbour porpoises exhibit localized evasion of a tidal turbine
Funding: Scottish Government (Grant Number(s): Marine Mammal Scientific Support Program MMSS/002/); Natural Environment Research Council (Grant Number(s): NE/R014639/1, NE/R015007/1).1. Tidal energy generators have the potential to injure or kill marine animals, including small cetaceans, through collisions with moving turbine parts. Information on the fine scale behaviour of animals close to operational turbines is required to inform regulators of the likely impact of these new technologies. 2. Harbour porpoise movements were monitored in three dimensions around a tidal turbine for 451 days between October 2017 and April 2019 with a 12-channel hydrophone array. 3. Echolocation clicks from 344 porpoise events were localized close to the turbine. The data show that porpoises effectively avoid the turbine rotors, with only a single animal clearly passing through the rotor swept area while the rotors were stationary, and none passing through while rotating. 4. The results indicate that the risk of collisions between the tidal turbine and porpoises is low; this has important implications for the potential effects and the sustainable development of the tidal energy industry.Publisher PDFPeer reviewe
Passive acoustic methods for fine-scale tracking of harbour porpoises in tidal rapids
The growing interest in generating electrical power from tidal currents using tidal turbine generators raises a number of environmental concerns, including the risk that marine mammals might be injured or killed through collision with rotating turbine blades. To understand this risk, information on how marine mammals use tidal rapid habitats and in particular, their underwater movements and dive behaviour is required. Porpoises, which are the most abundant small cetacean at most European tidal sites, are difficult animals to tag, and the limited size of tidal habitats means that any telemetered animal would be likely to spend only a small proportion of time within them. Here, an alternative approach is explored, whereby passive acoustic monitoring (PAM) is used to obtain fine scale geo-referenced tracks of harbour porpoises in tidal rapid areas. Large aperture hydrophone arrays are required to obtain accurate locations of animals from PAM data and automated algorithms are necessary to process the large quantities of acoustic data collected on such systems during a typical survey. Methods to automate localisation, including a method to match porpoise detections on different hydrophones and separate different vocalising animals, and an assessment of the localisation accuracy of the large aperture hydrophone array are presented.Publisher PDFPeer reviewe
Open-source workflow approaches to passive acoustic monitoring of bats
The work was funded by grants to PTM from Carlsberg Semper Ardens Research Projects and the Independent Research Fund Denmark.The affordability, storage and power capacity of compact modern recording hardware have evolved passive acoustic monitoring (PAM) of animals and soundscapes into a non-invasive, cost-effective tool for research and ecological management particularly useful for bats and toothed whales that orient and forage using ultrasonic echolocation. The use of PAM at large scales hinges on effective automated detectors and species classifiers which, combined with distance sampling approaches, have enabled species abundance estimation of toothed whales. But standardized, user-friendly and open access automated detection and classification workflows are in demand for this key conservation metric to be realized for bats. We used the PAMGuard toolbox including its new deep learning classification module to test the performance of four open-source workflows for automated analyses of acoustic datasets from bats. Each workflow used a different initial detection algorithm followed by the same deep learning classification algorithm and was evaluated against the performance of an expert manual analyst. Workflow performance depended strongly on the signal-to-noise ratio and detection algorithm used: the full deep learning workflow had the best classification accuracy (≤67%) but was computationally too slow for practical large-scale bat PAM. Workflows using PAMGuard's detection module or triggers onboard an SM4BAT or AudioMoth accurately classified up to 47%, 59% and 34%, respectively, of calls to species. Not all workflows included noise sampling critical to estimating changes in detection probability over time, a vital parameter for abundance estimation. The workflow using PAMGuard's detection module was 40 times faster than the full deep learning workflow and missed as few calls (recall for both ~0.6), thus balancing computational speed and performance. We show that complete acoustic detection and classification workflows for bat PAM data can be efficiently automated using open-source software such as PAMGuard and exemplify how detection choices, whether pre- or post-deployment, hardware or software-driven, affect the performance of deep learning classification and the downstream ecological information that can be extracted from acoustic recordings. In particular, understanding and quantifying detection/classification accuracy and the probability of detection are key to avoid introducing biases that may ultimately affect the quality of data for ecological management.Publisher PDFPeer reviewe
Passive acoustic tracking of the three-dimensional movements and acoustic behaviour of toothed whales in close proximity to static nets
Funding: Department for Environment, Food and Rural Affairs, UK Government (Grant Number(s): ME6052; Grant recipient(s): Jamie Macaulay, Allen Kingston, Simon Northridge, Alexander Coram). University of St Andrews.1. Entanglement in net fisheries (static and drift) is the largest known cause of direct anthropogenic mortality to many small cetacean species, including harbour porpoise (Phocoena phocoena), in UK waters. Despite this, little is known about the behaviour of small cetaceans in proximity to nets. 2. We have developed a passive acoustic monitoring (PAM) system for tracking the fine-scale three-dimensional (3D) movements of echolocating cetaceans around actively fishing nets by localising their acoustic clicks. The system consists of two compact four-channel acoustic recorders with sample-synchronised sensor packages that use 3D motion tracking technology to accurately calculate log orientation, depth, water temperature and ambient light level. Two recorders were used in tandem, with each one attached to and floating above the net floatline. The system can be deployed during normal fishing operations by a trained researcher or experienced fisheries observer. Recordings were analysed in PAMGuard software and the 3D positions of echolocating animals in the vicinity of the system were calculated using an acoustic particle filter-based localisation method. 3. We present findings from four deployments in UK waters (each 1–2 days in duration) in which 12 distinct harbour porpoise encounters yielded a sufficient number of detected clicks to track their movements around the net. The tracks show a variety of behaviours, including multiple instances of animals actively foraging in close proximity to the fishing net. 4. We show that a relatively inexpensive PAM system, which is practical to deploy from active fishing vessels, is capable of providing highly detailed data on harbour porpoise behaviour around nets. As harbour porpoises are the one of the most difficult species to localise, this methodology is likely to be suitable for elucidating the behaviour of many other toothed whale species in a variety of situations.Publisher PDFPeer reviewe
Implications of porpoise echolocation and dive behaviour on passive acoustic monitoring
Funding: The post-doctoral position for J.D.J.M. was funded by a FNU – Danish Natural Science Research Council grant to P.T.M. This study was also funded by the German Federal Agency for Nature Conservation via the grants “Effects of underwater noise on marine vertebrates” (Cluster 7, Z1.2-53302/2010/14) and “Under Water Noise Effects—UWE” (Project No. FKZ 3515822000). The contribution by T.A.M. was funded under the ACCURATE project (U.S. Navy Living Marine Resources Program, Contract No. N3943019C2176) and CEAUL (funded by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through Project No. UIDB/00006/2020).Harbour porpoises are visually inconspicuous but highly soniferous echolocating marine predators that are regularly studied using passive acoustic monitoring (PAM). PAM can provide quality data on animal abundance, human impact, habitat use, and behaviour. The probability of detecting porpoise clicks within a given area ( P ̂ ) is a key metric when interpreting PAM data. Estimates of P ̂ can be used to determine the number of clicks per porpoise encounter that may have been missed on a PAM device, which, in turn, allows for the calculation of abundance and ideally non-biased comparison of acoustic data between habitats and time periods. However, P ̂ is influenced by several factors, including the behaviour of the vocalising animal. Here, the common implicit assumption that changes in animal behaviour have a negligible effect on P ̂ between different monitoring stations or across time is tested. Using a simulation-based approach informed by acoustic biologging data from 22 tagged harbour porpoises, it is demonstrated that porpoise behavioural states can have significant (up to 3× difference) effects on P ̂ . Consequently, the behavioural state of the animals must be considered in analysis of animal abundance to avoid substantial over- or underestimation of the true abundance, habitat use, or effects of human disturbance.Publisher PDFPeer reviewe
- …