503 research outputs found

    Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins

    Get PDF
    We have identified a novel human karyopherin (Kap)β family member that is related to human Crm1 and the Saccharomyces cerevisiae protein, Msn5p/Kap142p. Like other known transport receptors, this Kap binds specifically to RanGTP, interacts with nucleoporins, and shuttles between the nuclear and cytoplasmic compartments. We report that interleukin enhancer binding factor (ILF)3, a double-stranded RNA binding protein, associates with this Kap in a RanGTP-dependent manner and that its double-stranded RNA binding domain (dsRBD) is the limiting sequence required for this interaction. Importantly, the Kap interacts with dsRBDs found in several other proteins and binding is blocked by double-stranded RNA. We find that the dsRBD of ILF3 functions as a novel nuclear export sequence (NES) in intact cells, and its ability to serve as an NES is dependent on the expression of the Kap. In digitonin-permeabilized cells, the Kap but not Crm1 stimulated nuclear export of ILF3. Based on the ability of this Kap to mediate the export of dsRNA binding proteins, we named the protein exportin-5. We propose that exportin-5 is not an RNA export factor but instead participates in the regulated translocation of dsRBD proteins to the cytoplasm where they interact with target mRNAs

    Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation.

    Get PDF
    Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways

    The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin

    Get PDF
    Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin–Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to βPIX. Rather, Scrib depletion disrupts E-cadherin–mediated cell–cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin–α-catenin fusion protein but not by E-cadherin–green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration

    Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import

    Get PDF
    Ubiquitin is a small polypeptide that is conjugated to proteins and commonly serves as a degradation signal. The attachment of ubiquitin (Ub) to a substrate proceeds through a multi-enzyme cascade involving an activating enzyme (E1), a conjugating enzyme (E2), and a protein ligase (E3). We previously demonstrated that a murine E2, UbcM2, is imported into nuclei by the transport receptor importin-11. We now show that the import mechanism for UbcM2 and two other human class III E2s (UbcH6 and UBE2E2) uniquely requires the covalent attachment of Ub to the active site cysteine of these enzymes. This coupling of E2 activation and transport arises from the selective interaction of importin-11 with the Ub-loaded forms of these enzymes. Together, these findings reveal that Ub charging can function as a nuclear import trigger, and identify a novel link between E2 regulation and karyopherin-mediated transport

    Cave-Dwelling Populations of the Monstrous Rainfrog (Craugastor pelorus) from Mexico

    Get PDF
    Amphibians are known cave dwellers, and a few anurans have shown to make exploratory or opportunistic use of subterranean environments. We report on the use of karst ecosystems and cavernicolous environments by the monstrous rainfrog Craugastor pelorus in Chiapas and Tabasco (Mexico). Individuals were found in crevices and wall depressions within the twilight zone of the cave, both during the day and at night. Although threatened by human activities and often severely understudied, caves are the last refugia for some endangered species. This report allows us to extend the known distribution of the species, increase our knowledge on a threatened species, and better understand the biodiversity and ecology of cave environments.info:eu-repo/semantics/publishedVersio

    Climatic and Topographic Control of the Stable Isotope Values of Rivers on the South Island of New Zealand

    Get PDF
    We show that climate and topography control the spatial distribution of stable isotope values on the South Island of New Zealand, based on a spatially dense (n = 193) river isotopic survey. Our data show a δ O minimum in isotope values east of the Southern Alps that demonstrates topographically driven continentality associated with the Southern Alps, which intersect the prevailing, moisture-laden westerlies. Our data define a South Island surface water line of δ H = 8.17 (±0.26) × δ O + 10.57 (±2.04), which is identical within 95% confidence intervals to the global and New Zealand meteoric water lines established from monthly precipitation samples. The observed river δ O values are strongly correlated with annual temperature range and winter temperature. Strongest correlations are between δ O and mean minimum winter temperatures (r \u3e 0.7 for June, July, August), with gradients of 0.58–0.66‰ /°C. Based on a multiple regression analysis of δ O against climate data, we present a river δ O model and isoscape that demonstrate the control of continentality and moisture source on New Zealand surface water isotope spatial patterns. Model validation against previously published river samples shows skill in predicting river δ O values (root-mean-square error = 0.83), confirming that the spatial variations in river δ O (and δ H) are robust to sampling period and reflect continental, precipitation source and temperature effects. Our data suggest that oxygen or hydrogen isotope paleoclimate proxies derived from rivers or open-system lakes on the South Island should be sensitive to winter temperature. 18 2 18 18 18 18 18 18 18

    Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10

    Full text link
    The stimulation of glucose uptake by insulin in muscle and adipose tissue requires translocation of the GLUT4 glucose transporter protein from intracellular storage sites to the cell surface(1-6). Although the cellular dynamics of GLUT4 vesicle trafficking are well described, the signalling pathways that link the insulin receptor to GLUT4 translocation remain poorly understood. Activation of phosphatidylinositol-3-OH kinase (PI(3)K) is required for this trafficking event, but it is not sufficient to produce GLUT4 translocation(7). We previously described a pathway involving the insulin-stimulated tyrosine phosphorylation of Cbl, which is recruited to the insulin receptor by the adapter protein CAP(8,9). On phosphorylation, Cbl is translocated to lipid rafts. Blocking this step completely inhibits the stimulation of GLUT4 translocation by insulin(10). Here we show that phosphorylated Cbl recruits the CrkII-C3G complex to lipid rafts, where C3G specifically activates the small GTP-binding protein TC10. This process is independent of PI(3)K, but requires the translocation of Cbl, Crk and C3G to the lipid raft. The activation of TC10 is essential for insulin-stimulated glucose uptake and GLUT4 translocation. The TC10 pathway functions in parallel with PI(3)K to stimulate fully GLUT4 translocation in response to insulin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62864/1/410944a0.pd
    corecore