10 research outputs found

    Reconciling scientific and religious discourse about madness during the age of reason: Lessons for today?

    No full text
    This paper argues that the secularization of madness, during the seventeenth and eighteenth centuries, occurred as a consequence of cultural change that accompanied the social upheavals of the age. In examining the reconciliation of competing explanations for madness, from theological and empirical viewpoints, it is suggested that these paradigms were never totally separated and argued that developments during this period were a consequence of continual interaction and dialogue between these contrasting views. Furthermore, it is suggested that an understanding of these changing times can illuminate present debates surrounding mental illness. © 1996 Blackwell Science Ltd

    Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9

    Get PDF
    An 8 month monitoring campaign on the Seyfert 1 galaxy Fairall 9 has been conducted with the International Ultraviolet Explorer in an attempt to obtain reliable estimates of continuum-continuum and continuumÈemission-line delays for a high-luminosity active galactic nucleus (AGN). While the results of this campaign are more ambiguous than those of previous monitoring campaigns on lower luminosity sources, we Ðnd general agreement with the earlier results : (1) there is no measurable lag between ultraviolet continuum bands, and (2) the measured emission-line time lags are very short. It is especially notable that the Lyα + N V emission-line lag is about 1 order of magnitude smaller than determined from a previous campaign by Clavel, Wamsteker, & Glass (1989) when Fairall 9 was in a more luminous state. In other well-monitored sources, speciÐcally NGC 5548 and NGC 3783, the highest ionization lines are found to respond to continuum variations more rapidly than the lower ionization lines, which suggests a radially ionization-stratified broad-line region. In this case, the results are less certain, since none of the emission-line lags are very well determined. The best-determined emission line lag is Lyα + N V, for which we find that the centroid of the continuum—emission-line crosscorrelation function is tcent ≈14—20 days. We measure a lag tcent<~4 days for He II λ1640; this result is consistent with the ionization-stratification pattern seen in lower luminosity sources, but the relatively large uncertainties in the emission-line lags measured here cannot rule out similar lags for Lyα + N V and He II λ1640 at a high level of significance. We are unable to determine a reliable lag for C IV λ1550, but we note that the profiles of the variable parts of Lyα and C IV λ1550 are not the same, which does not support the hypothesis that the strongest variations in these two lines arise in the same region

    The origin and abundances of the chemical elements revisited

    No full text
    The basic scheme of nucleosynthesis (building of heavy elements from light ones) has held up very well since it was first proposed more than 30 years ago by E.M. Burbidge, G.R. Burbidge, A.G.W. Cameron, W.A. Fowler, and F. Hoyle. Significant advances in the intervening years include (a) observations of elemental and a few isotopic ratios in many more extrasolar-system sites, including metal-poor dwarf irregular galaxies, where very little has happened, and supernovae and their remnants, where a great deal has happened, (b) recognition of the early universe as good for making all the elements up to helium, (c) resolution of heavy element burning in stars into separate carbon, neon, oxygen, and silicon burning, with fine tuning of the resulting abundances by explosive nucleosynthesis in outgoing supernova shock waves, (d) clarification of the role of Type I supernovae, (e) concordance between elements produced in short-lived and long-lived stars with those that increased quickly and slowly over the history of the galaxy, and (f) calibration of calculations of the evolution and explosion of massive stars against the detailed observations of SN 1987A. The discussion presupposes a reader (a) with some prior knowledge of astronomy at the level of recognizing what is meant by an A star and an AGB star and (b) with at least a mild interest in how we got to where we currently are. © 1991 Springer-Verlag

    The origin and abundances of the chemical elements revisited

    No full text

    Nierenbecken- und Harnleiterkarzinom

    No full text
    corecore