6,782 research outputs found
Full-revivals in 2-D Quantum Walks
Recurrence of a random walk is described by the Polya number. For quantum
walks, recurrence is understood as the return of the walker to the origin,
rather than the full-revival of its quantum state. Localization for two
dimensional quantum walks is known to exist in the sense of non-vanishing
probability distribution in the asymptotic limit. We show on the example of the
2-D Grover walk that one can exploit the effect of localization to construct
stationary solutions. Moreover, we find full-revivals of a quantum state with a
period of two steps. We prove that there cannot be longer cycles for a
four-state quantum walk. Stationary states and revivals result from
interference which has no counterpart in classical random walks
Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps
We develop a Melnikov method for volume-preserving maps with codimension one
invariant manifolds. The Melnikov function is shown to be related to the flux
of the perturbation through the unperturbed invariant surface. As an example,
we compute the Melnikov function for a perturbation of a three-dimensional map
that has a heteroclinic connection between a pair of invariant circles. The
intersection curves of the manifolds are shown to undergo bifurcations in
homologyComment: LaTex with 10 eps figure
Statistical mechanical aspects of joint source-channel coding
An MN-Gallager Code over Galois fields, , based on the Dynamical Block
Posterior probabilities (DBP) for messages with a given set of autocorrelations
is presented with the following main results: (a) for a binary symmetric
channel the threshold, , is extrapolated for infinite messages using the
scaling relation for the median convergence time, ;
(b) a degradation in the threshold is observed as the correlations are
enhanced; (c) for a given set of autocorrelations the performance is enhanced
as is increased; (d) the efficiency of the DBP joint source-channel coding
is slightly better than the standard gzip compression method; (e) for a given
entropy, the performance of the DBP algorithm is a function of the decay of the
correlation function over large distances.Comment: 6 page
The Statistical Physics of Regular Low-Density Parity-Check Error-Correcting Codes
A variation of Gallager error-correcting codes is investigated using
statistical mechanics. In codes of this type, a given message is encoded into a
codeword which comprises Boolean sums of message bits selected by two randomly
constructed sparse matrices. The similarity of these codes to Ising spin
systems with random interaction makes it possible to assess their typical
performance by analytical methods developed in the study of disordered systems.
The typical case solutions obtained via the replica method are consistent with
those obtained in simulations using belief propagation (BP) decoding. We
discuss the practical implications of the results obtained and suggest a
computationally efficient construction for one of the more practical
configurations.Comment: 35 pages, 4 figure
Universal diffusion near the golden chaos border
We study local diffusion rate in Chirikov standard map near the critical
golden curve. Numerical simulations confirm the predicted exponent
for the power law decay of as approaching the golden curve via principal
resonances with period (). The universal
self-similar structure of diffusion between principal resonances is
demonstrated and it is shown that resonances of other type play also an
important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure
Impact of a Pastoral Fallow on the Morphology and Growth of White Clover (Trifolium repens L.) in New Zealand Hill Pasture
Lifting the content and improving the distribution of perennial legumes such as white clover (Trifolium repens L.) of hill pastures in New Zealand is a major objective of a pasture improvement programme. This paper reports on the ecology of white clover over a 2 year post-fallow period. The fallow was a 7 month period without defoliation over spring-summer-autumn. The stolon length and weight of white clover increased from year 1 (94/95) to year 2 (95/ 96) post-fallowing (P\u3c0.1 and 0.05, respectively), while the average internode length declined (P\u3c0.05). However, the white clover growth rate was not significantly increased in the two measurement years. Fallowing significantly increased grass growth rate (P\u3c0.05) in the two years post-fallowing. The grasses seemed to have an immediate response post-fallowing, while the response of white clover was slower and cumulative
Nonstatistical dynamics on potentials exhibiting reaction path bifurcations and valley-ridge inflection points
We study reaction dynamics on a model potential energy surface exhibiting
post-transition state bifurcation in the vicinity of a valley ridge inflection
point. We compute fractional yields of products reached after the VRI region is
traversed, both with and without dissipation. It is found that apparently minor
variations in the potential lead to significant changes in the reaction
dynamics. Moreover, when dissipative effects are incorporated, the product
ratio depends in a complicated and highly non-monotonic fashion on the
dissipation parameter. Dynamics in the vicinity of the VRI point itself play
essentially no role in determining the product ratio, except in the highly
dissipative regime.Comment: 33 pages, 10 figures, corrected the author name in reference [6
Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry
We discuss classical integrable structure of two-dimensional sigma models
which have three-dimensional Schrodinger spacetimes as target spaces. The
Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The
original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R
due to the deformation. According to this symmetry, there are two descriptions
to describe the classical dynamics of the system, 1) the SL(2,R)_L description
and 2) the enhanced U(1)_R description. In the former 1), we show that the
Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a
Lax pair is constructed with the improved current and the classical
integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we
find a non-local current by using a scaling limit of warped AdS_3 and that it
enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is
presented and the corresponding r/s-matrices are also computed. The two
descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde
- âŠ