230 research outputs found
Primordial Black Holes: Observational Characteristics of The Final Evaporation
Many early universe theories predict the creation of Primordial Black Holes
(PBHs). PBHs could have masses ranging from the Planck mass to 10^5 solar
masses or higher depending on the size of the universe at formation. A Black
Hole (BH) has a Hawking temperature which is inversely proportional to its
mass. Hence a sufficiently small BH will quasi-thermally radiate particles at
an ever-increasing rate as emission lowers its mass and raises its temperature.
The final moments of this evaporation phase should be explosive and its
description is dependent on the particle physics model. In this work we
investigate the final few seconds of BH evaporation, using the Standard Model
and incorporating the most recent Large Hadron Collider (LHC) results, and
provide a new parameterization for the instantaneous emission spectrum. We
calculate for the first time energy-dependent PBH burst light curves in the
GeV/TeV energy range. Moreover, we explore PBH burst search methods and
potential observational PBH burst signatures. We have found a unique signature
in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray
observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The
implications of beyond the Standard Model theories on the PBH burst
observational characteristics are also discussed, including potential
sensitivity of the instantaneous photon detection rate to a squark threshold in
the 5 -10 TeV range.Comment: Accepted to Astroparticle Physics Journal (71 Pages, 22 Figures
Field theory simulation of Abelian-Higgs cosmic string cusps
We have performed a lattice field theory simulation of cusps in Abelian-Higgs
cosmic strings. The results are in accord with the theory that the portion of
the strings which overlaps near the cusp is released as radiation. The radius
of the string cores which must touch to produce the evaporation is
approximately in natural units. In general, the modifications to the
string shape due to the cusp may produce many cusps later in the evolution of a
string loop, but these later cusps will be much smaller in magnitude and more
closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps
Comment on ``Evidence for Narrow Baryon Resonances in Inelastic pp Scattering''
Compton scattering data are sensitive to the existence of low-mass resonances
reported by Tatischeff et al. We show that such states, with their reported
properties, are excluded by previous Compton scattering experiments.Comment: One page, submitted to PR
Constraints on diffuse neutrino background from primordial black holes
We calculated the energy spectra and the fluxes of electron neutrino emitted
in the process of evaporation of primordial black holes (PBHs) in the early
universe. It was assumed that PBHs are formed by a blue power-law spectrum of
primordial density fluctuations. We obtained the bounds on the spectral index
of density fluctuations assuming validity of the standard picture of
gravitational collapse and using the available data of several experiments with
atmospheric and solar neutrinos. The comparison of our results with the
previous constraints (which had been obtained using diffuse photon background
data) shows that such bounds are quite sensitive to an assumed form of the
initial PBH mass function.Comment: 18 pages,(with 7 figures
Supersymmetry and primordial black hole abundance constraints
We study the consequences of supersymmetry for primordial black hole (PBH)
abundance constraints. PBHs with mass less than about 10^{11}g will emit
supersymmetric particles when they evaporate. In most models of supersymmetry
the lightest of these particles, the lightest supersymmetric particle (LSP), is
stable and will hence survive to the present day. We calculate the limit on the
initial abundance of PBHs from the requirement that the present day LSP density
is less than the critical density. We apply this limit, along with those
previously obtained from the effects of PBH evaporation on nucleosynthesis and
the present day density of PBHs, to PBHs formed from the collpase of
inflationary density perturbations, in the context of supersymmetric inflation
models. If the reheat temperature after inflation is low, so as to avoid the
overproduction of gravitinos and moduli, then the lightest PBHs which are
produced in significant numbers will be evaporating around the present day and
there are therefore no constraints from the effects of the evaporation products
on nucleosynthesis or from the production of LSPs. We then examine models with
a high reheat temperature and a subsequent period of thermal inflation. In
these models avoiding the overproduction of LSPs limits the abundance of low
mass PBHs which were previously unconstrained. Throughout we incorporate the
production, at fixed time, of PBHs with a range of masses, which occurs when
critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and
epsf). Version to appear in Phys. Rev. D: minor change to calculation and
added discussio
NEUTRINOS FROM PRIMORDIAL BLACK HOLES
The emission of particles from black holes created in the early Universe has
detectable astrophysical consequences. The most stringent bound on their
abundance has been obtained from the absence of a detectable diffuse flux of
100 MeV photons. Further scrutiny of these bounds is of interest as they, for
instance, rule out primordial black holes as a dark matter candidate. We here
point out that these bounds can, in principle, be improved by studying the
diffuse cosmic neutrino flux. Measurements of near-vertical atmospheric
neutrino fluxes in a region of low geomagnetic latitude can provide a
competitive bound. The most favorable energy to detect a possible diffuse flux
of primordial black hole origin is found to be a few MeV. We also show that
measurements of the diffuse flux is the most promising to improve
the existing bounds deduced from gamma-ray measurements. Neutrinos from
individual black hole explosions can be detected in the GeV-TeV energy region.
We find that the kilometer-scale detectors, recently proposed, are able to
establish competitive bounds.Comment: 19 pages plus 9 uuencoded and compressed postscript figure
- …