35,774 research outputs found

    Transport in Coherent Quantum Hall Bilayers

    Full text link
    We discuss two phenomenological descriptions of low-current transport in bilayer quantum Hall system with exciton condensates, one based on a Landauer-Buttiker description of Andreev scattering at contacts to coherent bilayers and one based on a simplified single-parameter {\em p-ology} description of the weak to strong interlayer coupling crossover. The Andreev scattering phenomenology in intended to apply when the condensate is well developed and is used to predict current-voltage relationships for a variety of two contact geometries. We also apply this formalism to circumstances in which the tunnel current exceeds its critical value and the condensate is time-dependent. The {\em p-ology} approach is used to establish the universal development of large longitudinal drags, even in homogenous coherent samples, as the condensate weakens and the Hall drag is reduced.Comment: 13 pages, 3 figure

    Review of the environmental and organisational implications of cloud computing: final report.

    Get PDF
    Cloud computing – where elastic computing resources are delivered over the Internet by external service providers – is generating significant interest within HE and FE. In the cloud computing business model, organisations or individuals contract with a cloud computing service provider on a pay-per-use basis to access data centres, application software or web services from any location. This provides an elasticity of provision which the customer can scale up or down to meet demand. This form of utility computing potentially opens up a new paradigm in the provision of IT to support administrative and educational functions within HE and FE. Further, the economies of scale and increasingly energy efficient data centre technologies which underpin cloud services means that cloud solutions may also have a positive impact on carbon footprints. In response to the growing interest in cloud computing within UK HE and FE, JISC commissioned the University of Strathclyde to undertake a Review of the Environmental and Organisational Implications of Cloud Computing in Higher and Further Education [19]

    Haldane Sashes in Quantum Hall Spectra

    Full text link
    We show that the low-temperature sash features in the lowest Landau-level (LLL) tunneling density-of-states (TDOS) recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum Hall physics. Our analysis is based on expressions for the tunneling density-of-states which become exact at filling factors close to ν=0\nu=0 and ν=1\nu=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data.Comment: Added referenc

    Current-induced torques due to compensated antiferromagnets

    Full text link
    We analyse the influence of current induced torques on the magnetization configuration of a ferromagnet in a circuit containing a compensated antiferromagnet. We argue that these torques are generically non-zero and support this conclusion with a microscopic NEGF calculation for a circuit containing antiferromagnetic NiMn and ferromagnetic Co layers. Because of symmetry dictated differences in the form of the current-induced torque, the phase diagram which expresses the dependence of ferromagnet configuration on current and external magnetic field differs qualitatively from its ferromagnet-only counterpart.Comment: 4 pages, 5 figure

    Magnetic Oscillations of a Fractional Hall Dot

    Full text link
    We show that a quantum dot in the fractional Hall regime exhibits mesoscopic magnetic oscillations with a period which is a multiple of the period for free electrons. Our calculations are performed for parabolic quantum dots with hard-core electron-electron interactions and are exact in the strong field limit for kBTk_B T smaller than the fractional Hall gap. Explicit expressions are given for the temperature dependence of the amplitude of the oscillations.Comment: 11 pages, IUCM-004, plain te

    Trapping of magnetic flux by the plunge region of a black hole accretion disk

    Get PDF
    The existence of the radius of marginal stability means that accretion flows around black holes invariably undergo a transition from a MHD turbulent disk-like flow to an inward plunging flow. We argue that the plunging inflow can greatly enhance the trapping of large scale magnetic field on the black hole, and therefore may increase the importance of the Blandford-Znajek (BZ) effect relative to previous estimates that ignore the plunge region. We support this hypothesis by constructing and analyzing a toy-model of the dragging and trapping of a large scale field by a black hole disk, revealing a strong dependence of this effect on the effective magnetic Prandtl number of the MHD turbulent disk. Furthermore, we show that the enhancement of the BZ effect depends on the geometric thickness of the accretion disk. This may be, at least in part, the physical underpinnings of the empirical relation between the inferred geometric thickness of a black hole disk and the presence of a radio jet.Comment: 18 pages, 3 figures, accepted for publication in the Astrophysical Journal. See http://www.astro.umd.edu/~chris/publications/movies/flux_trapping.html for animation

    Magneto-electric coupling in zigzag graphene nanoribbons

    Full text link
    Zigzag graphene nanoribbons can have magnetic ground states with ferromagnetic, antiferromagnetic, or canted configurations, depending on carrier density. We show that an electric field directed across the ribbon alters the magnetic state, favoring antiferromagnetic configurations. This property can be used to prepare ribbons with a prescribed spin-orientation on a given edge.Comment: 4 pages, 5 figure

    Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet

    Full text link
    In this article we discuss the ground state of a parabolically confined quantum dots in the limit of very strong magnetic fields where the electron system is completely spin-polarized and all electrons are in the lowest Landau level. Without electron-electron interactions the ground state is a single Slater determinant corresponding to a droplet centered on the minimum of the confinement potential and occupying the minimum area allowed by the Pauli exclusion principle. Electron-electron interactions favor droplets of larger area. We derive exact criteria for the stability of the maximum density droplet against edge excitations and against the introduction of holes in the interior of the droplet. The possibility of obtaining exact results in the strong magnetic field is related to important simplifications associated with broken time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002
    corecore