35,774 research outputs found
Transport in Coherent Quantum Hall Bilayers
We discuss two phenomenological descriptions of low-current transport in
bilayer quantum Hall system with exciton condensates, one based on a
Landauer-Buttiker description of Andreev scattering at contacts to coherent
bilayers and one based on a simplified single-parameter {\em p-ology}
description of the weak to strong interlayer coupling crossover. The Andreev
scattering phenomenology in intended to apply when the condensate is well
developed and is used to predict current-voltage relationships for a variety of
two contact geometries. We also apply this formalism to circumstances in which
the tunnel current exceeds its critical value and the condensate is
time-dependent. The {\em p-ology} approach is used to establish the universal
development of large longitudinal drags, even in homogenous coherent samples,
as the condensate weakens and the Hall drag is reduced.Comment: 13 pages, 3 figure
Review of the environmental and organisational implications of cloud computing: final report.
Cloud computing – where elastic computing resources are delivered over the Internet by external service providers – is generating significant interest within HE and FE. In the cloud computing business model, organisations or individuals contract with a cloud computing service provider on a pay-per-use basis to access data centres, application software or web services from any location. This provides an elasticity of provision which the customer can scale up or down to meet demand. This form of utility computing potentially opens up a new paradigm in the provision of IT to support administrative and educational functions within HE and FE. Further, the economies of scale and increasingly energy efficient data centre technologies which underpin cloud services means that cloud solutions may also have a positive impact on carbon footprints. In response to the growing interest in cloud computing within UK HE and FE, JISC commissioned the University of Strathclyde to undertake a Review of the Environmental and Organisational Implications of Cloud Computing in Higher and Further Education [19]
Haldane Sashes in Quantum Hall Spectra
We show that the low-temperature sash features in the lowest Landau-level
(LLL) tunneling density-of-states (TDOS) recently discovered by Dial and
Ashoori are intimately related to the discrete Haldane-pseudopotential
interaction energy scales that govern fractional quantum Hall physics. Our
analysis is based on expressions for the tunneling density-of-states which
become exact at filling factors close to and , where the sash
structure is most prominent. We comment on other aspects of LLL correlation
physics that can be revealed by accurate temperature-dependent tunneling data.Comment: Added referenc
Current-induced torques due to compensated antiferromagnets
We analyse the influence of current induced torques on the magnetization
configuration of a ferromagnet in a circuit containing a compensated
antiferromagnet. We argue that these torques are generically non-zero and
support this conclusion with a microscopic NEGF calculation for a circuit
containing antiferromagnetic NiMn and ferromagnetic Co layers. Because of
symmetry dictated differences in the form of the current-induced torque, the
phase diagram which expresses the dependence of ferromagnet configuration on
current and external magnetic field differs qualitatively from its
ferromagnet-only counterpart.Comment: 4 pages, 5 figure
Magnetic Oscillations of a Fractional Hall Dot
We show that a quantum dot in the fractional Hall regime exhibits mesoscopic
magnetic oscillations with a period which is a multiple of the period for free
electrons. Our calculations are performed for parabolic quantum dots with
hard-core electron-electron interactions and are exact in the strong field
limit for smaller than the fractional Hall gap. Explicit expressions
are given for the temperature dependence of the amplitude of the oscillations.Comment: 11 pages, IUCM-004, plain te
Trapping of magnetic flux by the plunge region of a black hole accretion disk
The existence of the radius of marginal stability means that accretion flows
around black holes invariably undergo a transition from a MHD turbulent
disk-like flow to an inward plunging flow. We argue that the plunging inflow
can greatly enhance the trapping of large scale magnetic field on the black
hole, and therefore may increase the importance of the Blandford-Znajek (BZ)
effect relative to previous estimates that ignore the plunge region. We support
this hypothesis by constructing and analyzing a toy-model of the dragging and
trapping of a large scale field by a black hole disk, revealing a strong
dependence of this effect on the effective magnetic Prandtl number of the MHD
turbulent disk. Furthermore, we show that the enhancement of the BZ effect
depends on the geometric thickness of the accretion disk. This may be, at least
in part, the physical underpinnings of the empirical relation between the
inferred geometric thickness of a black hole disk and the presence of a radio
jet.Comment: 18 pages, 3 figures, accepted for publication in the Astrophysical
Journal. See
http://www.astro.umd.edu/~chris/publications/movies/flux_trapping.html for
animation
Magneto-electric coupling in zigzag graphene nanoribbons
Zigzag graphene nanoribbons can have magnetic ground states with
ferromagnetic, antiferromagnetic, or canted configurations, depending on
carrier density. We show that an electric field directed across the ribbon
alters the magnetic state, favoring antiferromagnetic configurations. This
property can be used to prepare ribbons with a prescribed spin-orientation on a
given edge.Comment: 4 pages, 5 figure
Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet
In this article we discuss the ground state of a parabolically confined
quantum dots in the limit of very strong magnetic fields where the electron
system is completely spin-polarized and all electrons are in the lowest Landau
level. Without electron-electron interactions the ground state is a single
Slater determinant corresponding to a droplet centered on the minimum of the
confinement potential and occupying the minimum area allowed by the Pauli
exclusion principle. Electron-electron interactions favor droplets of larger
area. We derive exact criteria for the stability of the maximum density droplet
against edge excitations and against the introduction of holes in the interior
of the droplet. The possibility of obtaining exact results in the strong
magnetic field is related to important simplifications associated with broken
time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002
- …
